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v
Moore, Richard McCrea. Ph.D., Purdue University, May 1988. Numerical 3
Solutions of Unsteady Inviscid Transonic Turbine Cascade Flows. Major A
Professor: Joe D. Hoffman, School of Mechanical Engineering. "3‘
\ '

A numerical analysis has been developed to solve two-dimensional inviscid :::
transonic turbine-type cascade flowfields. This analysis combines accuracy ':
comparable to that of the numerical method of characteristics with the ';
efficiency of finite difference methods. The MacCormack explicit finite E":
difference method is used to solve the unsteady Euler equations. Steady 'E
solutions are calculated as asymptotic solutions in time. A conservation
variable formulation of the Kentzer method has been developed in this v
investigation and is used to derive appropriate equations for the flowfield ‘Q‘
boundaries. The Kentzer method is based on characteristic theory, but uses a EE
finite difference method, consistent with the method used at interior points, to EE'
integrate the appropriate boundary equations. A grid generator has been .
developed to create C-type grids around cascade blades using techniques :
similar to the Poisson equation grid generation techniques developed by Steger :

and Sorensen. Two different planar turbine-type cascades have been studied. :i

The AACE II cascade blades are typical of the nozzle blades found in the first |§
stator in a turbine. The GMA 400 cascade blades are typical of later turbine “'
stator blades.‘ Numerical studies were performed with maximum Mach
[ “‘
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numbers in the flowfields ranging from 0.8 to 1.35. Numerical results are ‘
'

verified using experimentally measured blade surface static pressure data. A ‘
g

Y

numerical method of characteristics cascade flow solver has been developed to ;
'0

)

provide a relative standard for numerical results. The MacCormack code and \
the characteristics code produce very similar results and both are in excellent "
\]

. . ;

agreement with the experimental results. \
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ABSTRACT \

Moore, Richard McCrea. Ph.D., Purdue University, May 1988. Numerical
Solutions of Unsteady Inviscid Transonic Turbine Cascade Flows. Major
Professor: Joe D. Hoffman, School of Mechanical Engineering.

A numerical analysis has been developed to solve two-dimensional inviscid
transonic turbine-type cascade flowfields. This analysis combines accuracy

comparable to that of the numerical method of characteristics with the

efficiency of finite difference methods. The MacCormack explicit finite

S o

difference method is used to solve the unsteady Euler equations. Steady
G solutions are calculated as asymptotic solutions in time. A conservation

variable formulation of the Kentzer method has been developed in this

e e -

investigation and is used to derive appropriate equations for the flowfield ¥
boundaries. The Kentzer method is based on characteristic theory, but uses a h
finite difference method, consistent with the method used at interior points, to
integrate the appropriate boundary equations. A grid generator has been
developed to create C-type grids around cascade blades using techniques :
similar to the Poisson equation grid generation techniques developed by Steger
and Sorensen. Two different planar turbine-type cascades have been studied.
The AACE II cascade blades are typical of the nozzle blades found in the first

stator in a turbine. The GMA 400 cascade blades are typical of later turbine

stator blades. Numerical studies were performed with maximum Mach
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numbers in the flowfields ranging from 0.8 to 1.35. Numerical results are
verified using experimentally measured blade surface static pressure data. A
numerical method of characteristics cascade flow solver has been developed to
provide a relative standard for numerical results. The MacCormack code and
the characteristics code produce very similar results and both are in excellent

agreement with the experimental results.
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SECTION 1

INTRODUCTION

The analysis of cascade flowfields has many applications in the fields of
mechanical, aeronautical, and astronautical engineering. The goal of the
present investigation is to develop a cascade flowfield analysis technique which
combines accuracy comparable to the numerical method of characteristics with

the efficiency of finite difference techniques.

The specific objectives of the present investigation are presented in Section
I.1. Section 1.2 presents the background for this research. The approach

chosen to achieve the stated objectives is outlined in Section 1.3.

I.1 OBJECTIVES

The objectives of the research effort described in this dissertation are:

1. To develop a robust, general grid generator which will create body fitted
C-type grids around two-dimensional turbine nozzle blades using

automatic Poisson-type elliptic grid generation techniques.

2. To develop an accurate and efficient flow solver which will numerically

calculate unsteady, inviseid, subsonic/transonic flowfields through two-

.
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4
e dimensional turbine-type cascades using the MacCormack explicit finite
difference method and the Kentzer method applied in conservation

variables at the boundaries.

T e~

3. To validate the grid generator and the flow solver using high quality

experimental data and numerical results.

1.2 BACKGROUND

Any numerical technique requires some form of discretization of the

flowfield. In order to achieve second-order accuracy, which is desirable for )

most engineering applications, the flowfield and boundaries are normally fit

with a body-fitted grid. This grid is transformed into an equally spaced, 3

orthogonal computational grid. For the current investigation, these j
G requirements are achieved using an automatic Poisson-type grid solver to fit a

C-type grid around a typical blade in the cascade being studied. As with any ;

elliptic grid solver, all boundary locations are specified as Dirichlet boundary

conditions. A technique developed in the present investigation is used, in

conjunction with one developed by Steger and Sorenson [1], to automatically

B e

control grid point distribution in the interior of the flowfield. In addition to
allowing a high level of accuracy, this grid generation technique provides 3
significant generality since grids can be generated for two-dimensional

cascades of arbitrary camber angle, solidity, and blade shape.

Many flowfields are trisonic, that is they contain subsonic, sonic, and

supersonic flow regions. When evaluated in their steady state form, the Euler N

equations are elliptic for subsonic flows, parabolic for sonic flows, and
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hyperbolic for supersonic flows. Numerically solving steady trisonic flows using
these equations requires careful matching of different numerical techniques for
each flow region. Therefore, a more efficient and more generalized approach
involves considering the entire flowfield simultaneously using the unsteady
Euler equations. In their time dependent form, the Euler equations are
hyperbolic for all three flow regimes. Obviously, this approach provides
unsteady flow solutions directly. Steady flow solutions are calculated as
asymptotic solutions in time. This more general time dependent approach is

used for the present investigation.

The MacCormack explicit finite difference method [2] is used to integrate
the Euler equations numericaily. Finite difference techniques are generally
more computationally efficient than other types of numerical techniques. The
MacCormack method is a particularly good method due to its efficiency and its

second-order accuracy in both time and space.

The Euler equations can be solved using either conservation variables or
primitive variables. Both approaches have advantages. For example, the
highly accurate numerical method of characteristics is developed using the
primitive variable form of the governing equations. However, for many finite
difference methods, accuracy, robustness, and efficiency are enhanced by
solving the Euler equations in conservation variables. Conservation variables

are employed in the present investigation.

A technique proposed by Kentzer [3] permits accurate and efficient

calculation of boundary point properties. This technique uses characteristic
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theory to determine the appropriate governing equations at each type of
flowfield boundary. Then, for the sake of computational efficiency, Kentzer
suggests using a finite difference method to solve the resulting set of equations.
In the present investigation, the same finite difference method used at interior
points, the MacCormack explicit method, is also used for boundary point
calculations. Marcum and Hoffman [4] have implemented the MacCo:mack
method in conjunction with the Kentzer method boundary treatment, using

the primitive variable form of the Euler equations.

Marcum |[5] proposed a conservation variable version of the Kentzer
method. This conservation variable development of the Kentzer method is
based on primitive variable characteristic theory, wherein the compatibility
equations are transformed to a conservation variable form. In the present
investigation the conservation variable Kentzer method is developed.
Specifically, the conservation variable Kentzer method is used to implement
boundary conditions for the blade surface boundary, the trailing edge point,
the subsonic inflow boundary, and the subsonic exit boundary. Prior to the
present development of the conservation variable Kentzer method, the analyst
who chose to use the Kentzer method was required to solve the entire flowfield

in primitive variables or to inconsistently solve interior points using

conservation variables and boundary points using primitive variables.
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1.3 APPROACH

The concepts discussed in Section 1.2 are combined to produce an accurate
and efficient numerical solution technique for inviscid turbine-type cascade
flowfields. The resulting MacCormack flow solver is evaluated by calculating
flowfield solutions for two significantly different cascade geometries and by
calculating solutions over the full range of subsomic and transonic Mach
numbers representative of turbine flowfields. These solutions are validated
through comparison with high quality experimental data and with numerical

results obtained by the numerical method of characteristics.

Subsonic and transonic blade surface static pressure measurements are
available for the AACE II [6] and the GMA 400 {7] turbine type cascades.

These results provide an absolute test for the results of the MacCormack code.

The numerical method of characteristics matches numerics to the physics it
models more accurately than other numerical methods. Thus, it provides an
excellent standard of accuracy for other numerical methods. An efficient
inverse marching numerical method of characteristics inviscid cascade flow

solver is developed, as part of the current investigation, to provide a relative

comparison for the MacCormack flow solver.
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SECTION 1I

GOVERNING EQUATIONS
AND COORDINATE TRANSFORMATIONS

This section presents the governing equations for the present investigation
in a variety of conservation variable and primitive variable forms. One
conservation variable form is also shown transformed into strong conservation
form. An expanded discussion of the various forms of the governing equations

and the transformation is provided in Appendix A.

II.1 GOVERNING EQUATIONS IN CONSERVATION
VARIABLE FORM

The equations applicable to this research effort are the continuity equation,
the vector momentum equation, the energy equation, and the thermal and

caloric equations of state.

(P)+ V-(pV) =0 (2.1)

(o), + V-(0VV)+ VP =0 (2.2)

(pe)+V-[V(pe +P)] =0 (2.3)

2 e e -

R



. These equations are based on the following assumptions:
continuum flow,

inviscid flow,

no body forces,

no heat conduction,

simple thermodynamic system, and

thermally and calorically perfect gas.

Equations (2.1) to (2.3) can be presented in the following short hand

notation.

(n), =€ (2.8)

(V). = @ (2.7)

(e}, =€ (2.8)

where €, M and € contain the space derivatives appearing in the
continuity, vector momentum, and energy equations, respectively. Written in

vector notation, € , M and € are:

€ =—V-(pV) (2.9)




@ A =—V(pVV)-VpP (2.10)

¢ = —V-[V(pe+P)] (2.11)

The matrix form of the governing equations is:

Q. +E,+F, =0 (2.12)
where
p pu pv
I e I el I o
pe (pe +P)u (pe +P)v
G I1.2 GOVERNING EQUATIONS IN PRIMITIVE

VARIABLE FORM

The conservation variable form of the continuity equation, equation (2.1),

is expanded to yield the primitive variable form:

De o) =
- +p(VV)=0 (2.13)

Expanding equation (2.2) into primitive variables and using the continuity
equation, equation (2.13), to simplify the result yields the following primitive

variable form of the vector momentum equation:

DV
— 4+ VP = .14
P TVP =0 (2.14)
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@ The energy equation is used in two different primitive variable forms in
later sections and appendices. Appendix A shows the expansion of equation

(2.3) into both of the following primitive variabie forms:

DP 9 D/’ -
= 2= 9 2.1
Dt © Dt (2.15)
2
: D y° :
1 DP  V? Dp +P v
Lo vV o Yp 2 (VV ~—(TWV)+V-YP =0 (2.16
~—1 Dt 2 Dt tr Dt + 7‘—1( J+e 2 (VV)+ (2.16)

I1.3 COORDINATE TRANSFORMATIONS AND THE
STRONG CONSERVATION FORM

Coordinate transformations are often utilized in numerical computations to

ﬁ improve solution accuracy. This requires two major steps: the transformation
of the grid covering the physical domain of interest to a uniform orthogonal

computational grid, and the transformation of the governing equations from

the physical domain to the computational domain. The grid transformation is

addressed in Section V and in Appendix E. The transformation of the

governing equations is presented in this section, with more detail afforded in

Appendix A.

I1.3.1 COORDINATE TRANSFORMATIONS

Since neither the physical nor the computational grid is time dependent in
the present investigation, derivatives with respect to time are unaffected by

the transformation. Therefore, only space transformations are considered.
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0 The physical and transformed spaces are related through a one-to-one v
(]
correspondence. That is, each point in the physical domain, (x,y), is related to .
ot
exactly one point in the computational domain, ({,7), and vice versa. )
()
0
Therefore, the computational space is described by: :1
= &xy) (2.17) v
’
\J
"
1= 1(x,y) (2.18) ;
or conversely, A
"
.I
x = x(&,) (2.19) '
)
y = y({n) (2.20) !
4
!
. . . . . . }
Partial derivatives of the generic variable, { = f(x,y), are transformed using t
Nl
, G the partial diflerentiation chain rule:
y '
b ::
fy = L& +1,0x (2.21) :
\J
v
) fy =1&+1n (2.22) .
p The terms §,, Ey, 7y, and 7, are the transformation metrics. These metrics are t‘
tif 2

calculated using the following equations:

HS=Jy, (2.23)

A
L S X

TIX = —J y< (2-24) bt

\

; & =-Jx, (2.25) ]
ny = J xg (2.26) y

%D ]
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where J is the Jacobian of the transformation. By definition J is given by the

following determinant:

(2.27)

This determinant is equivalent to the reciprocal of the Jacobian of the inverse

transformation, I. In other words, J = I™!, where

¢ X

< 7]
1=

¢ Yy

Physically, the Jacobian: represents a stretching function which relates a

(2.28)

differential volume in physical space to that same volume in the transformed

space.

Since the computational grid ir the transformed space is orthogonal and
equally spaced, all the inverse metrics (x, x,, ¥, ¥,) can be calculated
numerically to a high-order of accuracy. As Thompson [8] points out, these
metrics should be numerically approximated in the same manner as the
dependent variables are approximated in the governing equations. For the
MacCormack method, used in the present investigation, the metrics should be
forward differenced for the predictor calculations and backward differenced for

the corrector calculations. This issue is discussed further in Appendix A.

11.3.2 GOVERNING EQUATIONS IN STRONG CONSERVATION FORM

Using the partial differentiation chain rule to transform the space

derivatives in equation (2.12) as shown in equations (2.21) and (2.22) results in

-
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the following system of equations in weak conservation form.
Qt + £XE{ + T]XEI[ + EyF{ + 7lyF,, =0 (2.29)

Using a technique developed by Viviand {9] and Vinokur [10], equation (2.29)

can be recast into the strong conservation form:
1Q}: + [I(E&, + FE&)le + 1(Eny +Fry)], = 0 (2.30)

The development of equation (2.30) is presented in Appendix A.

11.3.3 CONTRAVARIANT VELOCITIES

Equation (2.30) contains several groupings of velocity products of the

following form:

U= {u+&yv (2.31)

V = nu+nv (2.32)

These groupings are called contravariant velocities. Contravariant velocities
represent transformed velocity components in the directions of the
computational coordinates. Specifically, U represents the velocity component

in the & direction, and V represents the velocity component in the # direction.

Substituting these contravariant velocities into the transformed governing
equations improves computational efficiency. Thus, the strong conservation

law governing equations, with the contravariant velocities incorporated, are:

Q. +E(+F, =0 (2.33)




13 ,

¢
‘ p I(pU) I(nV) :;

- _ |mU+p) I(puV + 1,P) .
pv = I(pvU + &,P) = | (pvV + 1yP) o
pe 1{(pe +P)U] 1{(pe +P)V]

e

In this research program, equation (2.33) is solved using the MacCormack
explicit finite difference method to calculate properties at all points in the

interior of the flowfield. The Kentzer method yields similar sets of equations

applicable at the various boundary points.
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SECTION III

THE KENTZER METHOD

Many techniques exist for calculating fluid properties at the boundaries of
a flowfield. At a boundary the physics are described by the applicable
boundary condition equations and the governing differential equations of
motion. Thus, the number of equations exceeds the number of solution
variables and the problem is over specified. Therefore, to incorporate the
boundary conditions, some boundary point solution techniques ignore one or

more of the governing equations and, therefore, some important physics.

The Kentzer method [3] combines the boundary conditions and the
governing differential equations of motion into a new set of equations which
includes all the applicable physics yet does not over specify the problem. The
Kentzer method is based on characteristic theory. Characteristic theory is
described in Appendix B and summarized in this section. Detailed
developments of the method of characteristics have been published by

Rusanov [11], Zucrow and Hoffman (12}, and Hoffman [13].

Characteristic theory uses the primitive variable form of the governing

equations. Therefore, up to the present, the Kentzer method has been applied
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using primitive variables. However, a conservation variable form of the
Kentzer method, which was first proposed by Marcum [5], is developed and
applied in the present investigation. This variation of the Kentzer method is
described in this section. The conservation variable Kentzer method is applied

to several boundary conditions in Section IV.

II1.1 METHOD OF CHARACTERISTICS

The method of characteristics identifies the physical paths of propagation
of information through a flowfield, which are the pathline and the
wavesurfaces. This identification process is developed in Appendix B. The

results of that development are summarized below.

The governing equations for the present investigation are presented in
Section II. These equations form a set of hyperbolic partial differential

equations of the first order. In primitive variables they are:

Dp VAT

oe T V=0 (3.1)
DV VP

oe T p =0 (3.2)
DP  2Dp _

Dt "2 Dt 0 (3.3)

The goal of the method of characteristics is to form linear combinations of
this set of equations to obtain an equivalent set of compatibility equations. A
compatibility equation is an interior operator which has one less independent

variable, contains derivatives only in the corresponding characteristic surface,

e e T e 8T T T e VW a0 ag o et Y 9t 0T e W W1, ‘ N, .0: Y, Dty e,

DTN

S gy

-



I I L P L R LT T T T L POt AR AN N R KA T O T g% g gl ok oy v

16

and is valid only in that surface. A characteristic surface is a surface in the
solution space on which the governing partial differential equations may be

combined linearly to form a compatibility equation.

For unsteady two-dimensional flow there are three independent variables:
(x,y,t). Therefore, the characteristic surfaces are surfaces in three-dimensional
space. The pathline is the intersection of all the stream surfaces containing
the point in space which is under consideration. The waveline is the line of
contact between a wave surface and the Mach conoid. The Mach conoid is
the envelope of all wave surfaces which contain the given point in space which
is under consideration. Two stream surfaces and the corresponding pathline
are illustrated in Figure 3-1. A Mach conoid, a wave surface, and the

corresponding waveline are illustrated in Figure 3-2.

There are two types of compatibility equations corresponding to the two
types of characteristic surfaces: the pathline equation and the waveline
equation. The pathline equation is the energy equation in primitive variable

form, equation (3.3), which is repeated here for convenience.

DP , D
2 220, 4
Dt - Dt (3-4)

PI—)(EI is the substantial derivative, which is the directional derivative along the

pathline. As demonstrated in Appendix B, the waveline equation is not as

simple. The waveline equation is formed as a linear combination of equations

(3.1) to (3.3), which reduces to:
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% —paﬁ'%% + pa? [V-V—ﬁ-(ﬁ-\‘/)V] =0 (3.5)
where 2() is the directional derivative along the waveline. The term in

a2t
brackets contains derivatives in the corresponding wave surface which are

called cross derivatives.

The pathline equation, equation (3.4), is valid on the pathline. The
waveline equation, equation (3.5), is valid on the wave surface corresponding
to the wave surface unit normal vector, i. There are an infinite number of
choices for the wave surface unit normal vector i corresponding to the infinite
number of wave surfaces at a point. However, only four compatibility
equations can be included as a set of independent equations for unsteady two-
dimensional flow. The pathline equation must be included since it is the only
compatibility equation which contains a derivative of density. Consequently,
three and only three waveline equations can be used independently for

unsteady two-dimensional flow.

1.2 THE KENTZER METHOD IN CONSERVATION
VARIABLES

As shown above, characteristic theory uses the primitive variable form of
the governing differential equations of motion to derive the pathline and
waveline equations. Therefore, the Kentzer method has historically been

applied in primitive variables. However, a conservation variable form of the

Kentzer method is developed and applied in the present investigation.
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The conservation va:iable form of the governing equations written in vector

notation, equations (2.6) to (2.8), are repeated here for convenience:

() =€ (3.6)
(pV), = M (3.7)
(ve), =% (3.8)
where
€ = —V-(pV) (3.9)
M = —V(pVV)- VP (3.10)
€ = —V-[V(pe +P) (3.11)

A linear combination of these conservation variable governing equations
produces the conservation variable form of the pathline equation, which

reduces to:

2

€ -V- 4 +¢  (3.12)

2 2 2
V7 - ,ya_l ]pt—v‘(PV)t‘*'(Pe)t = [X{ - ,;.1_1

In a similar manner, a linear combination of the conservation variable form

of the governing equations produces the conservation variable form of the

waveline equation, which reduces to:
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Vi o ahV an
2 ~ ~ —_
- %-r%—?— € — |V+| A +¢ (3.13)

Appendix C demonstrates the mathematical equivalence of the primitive
variable and the comservation variable compatibility equations. While these
two sets of equations are mathematically equivalent, only the primitive
variable compatibility equations can be used to construct a numerical method
of characteristics, because only the primitive variable equations are made up
solely of derivatives which lie in characteristic surfaces. However, since the
Kentzer method uses finite differences to solve the boundary point equations,

either set of compatibility equations is acceptable.

By applying the Kentzer method to these conservation variable
compatibility equations, the appropriate set of conservation variable equations
is derived for each type of boundary being considered. At boundary points,
the governing equations, equations (3.6), (3.7), and (3.8), are replaced by the
pathline equation, equation (3.12), and the waveline equation, equation (3.13),
applied in three independent wave surfaces. Depending upon what type of
boundary is being considered, one or more of these compatibility equations are
replaced by boundary conditions. Since each compatibility equation contains
all the physics described by the governing equations, all the appropriate

physics is included in the equations produced by the Kentzer method.

At interior points, the same set of compatibility equations could be used,

but they reduce to the original set of governing differential equations of
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motion. It is only when one or more boundary conditions replace one or more

of the compatibility equations that the resulting set of applicable equations

differs from the original governing differential equations of motion.

At every boundary point, the resulting equations are solved by the same
numerical method used at interior points. For the present investigation, that

method is the MacCormack explicit forward-backward finite difference method.

III.3 UNIT NORMAL VECTORS

In order to implement the boundary point =quations, a local coordinate
system is established at the boundary point. The local boundary coordinates
are defined by b and &, where b is the unit vector normal to the boundary and

¢ is the unit vector tangent to the boundary.

At any given point, an infinite number of wave surfaces exist which could
be chosen for application of the waveline equation. Since only three waveline
equations are considered at each boundary point, the wave surface unit
normal vectors, fi,, fiy, and fi3, are chosen such that they are equally
distributed and aligned with the boundary at the point being considered. The
fi, wave surface unit normal vector is chosen to be equal to the boundary unit
vector, b. Thus, in terms of the unit vectors b and &, the three wave surface

unit normal vectors are defined in the follcwing manner:

A, =b (3.14)

V3

2

fig = —% b+ ¢ (3.15)
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. V3
@ ﬁ3=——;—b— 23 ¢ (3.16)

All five of these unit vectors, b, ¢, 0,;, A, and fi3, are shown at three

boundary point locations on a C-type grid in Figure 3-3.
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Figure 3-3. Unit vectors b, ¢, 1,, fiy, and 03 on three boundaries.

| v
\J
’ l'?

, ~ -y i PN o r o A\ L W YL W
RO A0ACRONIELAOGOM N P I M A I OO ST A A S ’K TG o . " ._i' HE R ' ) %



AN WL N UN RSN B E N U BN B RA ST AR RS R R R R A, RN A N R R R

25

SECTION 1V

UNIT PROCESSES

Several unit processes are employed in the computation of cascade

flowfields. Each of the following types of flowfield points must be considered:
1. interior points,
2. solid wall boundary points,
3. trailing edge point,
4. subsonic inlet boundary points,
5. subsomic exit boundary points, and
6. supersonic exit boundary points.

All periodic boundary points and grid cut points lie in one of the regions
listed above. Therefore, no additional sets of equations are required to
compute these points. However, because of their location on the

computational grid, they do require special handling of indices.

This section summarizes the MacCormack method and the results of the

Kentzer method unit process development for each of the flow regions listed

above. The Kentzer method is discussed in Section III. Appendix D presents
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' each of the unit process developments in detail.

The equations derived in this section are presented in terms of physical

domain (x,y,t) derivatives. Prior to their implementation, these equations are

transformed to computational space. At the interior points the governing
equations are transformed into the strong conservation form as shown in
equation (2.33). At the boundaries the transformed equations consists of the
same groupings of space derivatives transformed into strong conservation
form, however, these derivative terms have coefficients which are not affected
by the transformation. Therefore, the boundary point equations are in a

weak conservation form.

At interior points the Euler equations apply. Those equations are repeated

here for convenience:

(), =6 (4.1)
(oY), = M (4.2)
(pe) =€ (4.3)

where €, .Zi, and € contain the space derivatives appearing in the
continuity, vector momentum, and energy equations, respectively. Written in

vector notation, €, M ,and & are:

€ =--V-(pV) (4.4)
M = —V-(oVV) - VP (4.5)
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€ = —V-[V(pe +P)) (4.8)

At all boundary points, the Kentzer method is used to determine the
appropriate set of equations to be solved. At all interior and all boundary
points, the space derivative terms €, M , and € appear. In addition, at all
interior and all boundary points, the MacCormack explicit finite difference

method is used to discretize the appropriate equations.

IV.l1 THE MACCORMACK METHOD

The MacCormack explicit finite difference method [2] is used in this
investigation to calculate the flowfield solution. This predictor-corrector

method is second-order accurate in time and space.

The transformed governing equations in matrix form are presented in

Section 11.3.3 and are repeated here for convenience:

6@'*'}73{‘*'}7,/ =0 (4.7)
where
p 1{pU) I{pV)
_ pu _ I(puU +&,P) _ I(puV +n,P)
Q=T E=liovu+e,p) F = 11w +n,P)
pe I|(pe +P)U] I[(pe +P)V]

The two steps of the MacCormack method can be summarized, for the

present investigation, by the following equations. The predictor space

derivatives are all computed using current time level property values:
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The corrector space derivatives are all computed using forward time level

property values:

n:r] (4.9)

QY = Q- At [B [E{ ]i.j +B [F" ]i.j

To achieve second order accuracy in time and space, the results of these two

steps are averaged:
-— 1 -— —_—
=1 [qumeqsT) (4.10)

Efficiency is improved by combining equations (4.9) and (4.10) in the following

manner:
) 1l |ze771, & = |n+T = |o¥FT
i [Qa’,’f +Qf— At Ji,j[B (Eil,j +B[F,,],"j ” (4.11)

As shown in equations (4.8), (4.9), and (4.11), F( ) are first-order forward-
difference operators and B( ) are first-order backward-difference operators.

Those operators are:

(E&,;—ER)

F(E¢); = A
_ (F&n—F3)
F(F I})ix,lj = AT]

DML PO ) [N ’ h h
R e N R D O DR Ot S D S DS D M O S MO SO SRS O S W DS DS G RSOSSNSO OOy

-
-



she Tt
sy

]

RN S SR JENRS RS AN AN R RN R AN AL RN AN RN AN AR T KR ARAR AN AR AR AR AR AR I

29

FT FT
B(E,)>*T = (BT BT
/L) AE

(F n-TT Fn+ 1)

- i,j
B(Fll)il,lj.'- = An

By incorporating the forward-difference operators, the MacCormack predictor
equation, equation (4.8), applied to the transformed governing equations in

matrix form becomes:

for Q- =AY

+

At n (4.12)

o n o LD
E1+1,_1 E i,j+1 -Fi,j ]
n

Similarly, by incorporating the backward-difference operators, the
MacCormack corrector equation, equation (4.11), applied to the transformed

governing equations in matrix form becomes:

_ _ En-'FT En-TT anr Fn-Tl'
+1 T i) i-1,j L
Qn = 0.5 [Qil,lj+ + Qi’,‘j— At Ji,j{ AE -+ An (4 13)

For the present investigation, all grid spacings on the computational grid are

unity (i.e., A = Ay = 1.0).

At each of the boundaries, one of the forward- or the backward-difference
operations requires flow properties and transformation metrics outside the
flowfield to approximate flow property partial derivatives at the boundaries.
Therefore, first-order or second-order extrapolation is used to approximate
these values outside boundaries. Then the MacCormack method, as described
above, is applied to the appropriate boundary point equations to evaluate

boundary property values.
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IV.2 INTERIOR POINT UNIT PROCESS

At interior points, the MacCormack method is applied directly to the
transformed governing equations in the strong conservation-law form, equation
(2.33). The resulting finite difference equations, equations (4.12) and (4.13),
are solved at each interior point to determine the solution at the new time

level.

IV.3 BLADE SURFACE BOUNDARY POINT UNIT
PROCESS

In a two-dimensional cascade flow, the surface of the blade forms the only
solid wall boundary. The boundary condition applicable at a free slip solid

boundary point is that the velocity normal to the boundary is zero:

bV =0 (4.14)

To determine the applicable equations at the blade surface boundary point,
the governing equations, equations (4.1) to (4.3), are replaced by compatibility
equations, equations (3.12) and (3.13). The waveline equation, equation (3.13),
is applied in three wave surfaces corresponding to the wave surface unit
normal vectors, i}, fi;, and fi;, given by equations (3.14) to {3.16). Since the
boundary condition, equation (4.14), must be incorporated, the waveline
equation corresponding to vector fi; (which was intentionally placed outside
the flowfield) is replaced by the boundary condition. This situation is
illustrated in Figure 3-3. The applicable equations at a solid wall boundary

point are the boundary condition, equation (4.14), the pathline equation,
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equation (3.12), and the waveline equation, equation (3.13), applied in the
remaining two wave surfaces corresponding to wave surface unit normal

vectors i, and fiz. Thus,

bV =0 (4.15)

v2  ad,V v afi 7
s T 1 ]Pt + -1 ](P )+ (pe):
vz af,V any | -
= |— € — |V+ - M +E 4.17
2 + y—1 y—1 t ( )
vt  afgV 9 afiy 7
2 T ]pt— + 0 ](p )+ (oe)

aﬁ3

~y-1

—

- M+ ¥ (4.18)

—+ V+

2 y—1

V2 aﬁa'v ](g _

Equations (4.15) to (4.18) comprise an appropriate set of equations for the
solid wall boundary point. However, these equations are unnecessarily
complicated. Equations (4.16) to (4.18) each contain more than one time

derivative. These four equations can be rearranged into a form which is

simpler and more computationally efficient to solve by a finite difference

.
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3
.
' ‘ method. That rearrangement results in the following set of equations: !
—¢+ | (4.19) ]
Py = . '
2a .
;

u A -
(pu)y = M + | o —b; }(b' M) (4.20) o
3
¥
"
[, 4
pv = |— |pu (4.21) 3

e

W
4
N
V2 a ~o— \
ey =€ +|—+——— b H 4.22 )
(pe). e ]( ) (4.22) 4
Equations (4.19) to (4.22) are solved at each solid blade surface boundary ::
v
point to determine the solution at the new time level. s
¥
e The MacCormack method backward corrector calculations require ™
U
L]
predicted property values one row of grid points inside the solid boundary. :Z
3
This is achieved by extrapolating predicted values from the flowfield. Both .
linear and quadratic extrapolations have been used at the blade surface during 0
*C
the current research effort. Witk either approach some explicit smoothing is ::
§
V]
required to stabilize the solution. Using linear extrapolation produces good A
results. When quadratic extrapolation is used the smoothing requirement is "'
X
increased to such an extent that some significant flow features are smeared :j’
4
out. Therefore, linear extrapolation is used at the blade surface boundary Y
points in the present investigation. ,i
¢
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IV.4 TRAILING EDGE POINT UNIT PROCESS

In the inviscid cascade flowfield, the Kutta condition is enforced at the
trailing edge of the cascade blade. Specifically, the flows leaving the two sides
of the blade surface at the trailing edge are forced to flow parallel to each
other in a direction such that the static pressure is equal on the two sides of

the trailing edge point.

In the present investigation, the requirements listed above are enforced by
installing a small imaginary solid wall segment which is hinged at the trailing
edge point. The flow on each side of the hinged wall segment is solved
independently, in a manner similar to the technique described in Section IV.3
for the solid blade surface point. By forcing the flow on both sides of the wali
segment to follow the wall, the flows on the two sides of the trailing edge ave

forced to be parallel to each other.

After solving for the flow properties on each side of the hinged wall
segment independently, the pressure difference between the two sides is
compared. If the difference is not equal to zero, to within a specified
tolerance, a zero finding secant method is used to correct the wall orientation
(low angle) toward the angle where the pressures will be equal. This
procedure is iterated until the pressure difference between the pressure and

suction sides of the blade, at the trailing edge, is approximately zero.

As mentioned above, the flow on each side of the imaginary hinged wall

segment is solved in a manner similar to the grid points which lie on the

remainder of the blade surface. However, because the imaginary wall segment
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is not stationary, but instead is allowed to pivot, the local coordinate systems,
set up on each side of the wall at the trailing edge points, also pivot. This is

illustrated in Figure 4-1.

Throughout the trailing edge point unit process derivation, unless otherwise
specified, the local coordinate system unit vectors, b and &, are defined with
respect to their orientation at the forward time level, that is, the time level of
the predicted and corrected properties. Therefore, unless otherwise specified,
during the iterative solution process, b is aligned perpendicular to, and ¢ is

aligned parallel to the hinged wall segment at the angle the wall is assumed to

be at, at the forward time level, during that iteration.

The boundary condition applicable at the trailing edge point’s imaginary
hinged wall segment is that the velocity normal to the wall segment, at the

hinge, at the new time step, is zero.

bV =0 (4.23)

To determine the applicable equations at the trailing edge point, the
governing equations, equations (4.1) to (4.3), are replaced with compatibility
equations, equations (3.12) and (3.13). The waveline equation, equation (3.13),
is applied in three wave surfaces corresponding to the wave surface unit
normal vectors, f,, fiy, and A3, given by equations (3.14) to (3.16). Since
fi, = b, the waveline equation corresponding to vector i, extends beyond the
hinged wall segment and therefore, does not affect the flow on the side of the
wall under consideration. As at the blade surface boundary condition, the 1,

waveline is intentionally placed outside of the flow and is replaced by the

0
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—— Unit vectors at current
time level

———~- Unit vectors adjusted to
new flow direction

Suction side flow

o>

pressure

Figure 4-1. Trailing edge point unit vectors and flow directions.
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boundary condition, equation {4.23). Thus, the applicable equations at the

trailing edge point are the boundary condition, equation (4.23), the pathline

equation, equation (3.12), and the waveline equation, equation (3.13), applied

in the remaining two wave surfaces corresponding to wave surface unit normal

vectors fi, and fiz. Thus,

¢ -V- M +¢

bV =0
V? a’ V? a’
2 T }m—v'(ﬁ)ﬁ(ﬂe)t =% 75
v2 aﬁ2'v v afiy 7
s T —1 + 1 (AV)y + (pe)
2 af,V afiy | -
S A T TR N By
2 v—1 y—1
V2 aﬁ;,’v 7 afi; 7
2 Yo }pt +7 ](p )+ (pe)
2 afyV afig | -,
S A A N i N Ny
2 7—1 ~y—1

(4.24)

(4.25)

(4.26)

(4.27)

Equations (4.24) to (4.27) comprise an appropriate set of equations for the

flows on the two sides of the hinged wall segment (trailing edge point).

However, these equations are unnecessarily complicated. Equations (4.25) to

(4.27) each contain more than one time derivative. These four equations can
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be rearranged into a form which is simpler and more computationally efficient
to solve by a finite difference method. That rearrangement results in the

following set of equations:

6'[(Pv)t‘ M |

p=%€ + (4.28)

6V -2a]

M +g | — M+ 'E—J] (pu)]
(u), = = (4.29)
S
1—g ‘c—]
c.
pv = [-j—]pu : (4.30)
V& al

(o) = & + |V + | == 1B V).~ | (4.31)

where g = (u—2ab;)/(v—2ab;). In the denominator of equation (4.29), the &
vector is parallel to the hinged wall segment at the current time level for the
predictor caiculations, and is parallel to the hinged wall segment at its
assumed position at the forward time level for the corrector calculations. For
both steps, the temporal derivative of the ratio of the ¢ components is equal to
the ratio at the forward time level, minus the ratio at the current time level,

all divided by the time step.

Equations (4.28) to (4.31) are solved on each side of the imaginary hinged

wall segment located at the blade trailing edge to advance the solution in
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time. The solution process is iterated, changing the flow angle at each
iteration until the pressures on the two sides of the trailing edge are equal to
within a specified tolerance. For the results presented in Section VII, a
tolerance of 107 was used to evaluate convergence of the pressure difference

normalized by the inflow total pressure.

The same set of equations must be solved at the predictor and the
corrector steps of the MacCormack method. Therefore, the flow angle, and
the corresponding forward time level definitions of b and &, must be the same
for both steps. This constrains the iteration sequence to include both the
predictor and corrector steps. Therefore, all points on the C-grid except the
trailing edge point are predicted, next the trailing edge point is iteratively

predicted and corrected, then all remaining points are corrected.

IV.5 SUBSONIC INFLOW BOUNDARY POINT UNIT
PROCESS

When the component of the fluid velocity perpendicular to the inflow
boundary is less than the local speed of sound, the fluid properties at that
boundary are dependent upon both upstream and downstream phenomena. If
the fluid velocity were zero, the fluid properties would be influenced from all
directions equally. When the velocity is not negligible, a greater influence will
be felt from the upstream direction. From a characteristic perspective, this
means that most of the base of the Mach cone (domain of dependence) lies

outside the computational domain at the subsonic inflow boundary.
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N
‘ At an inflow boundary, one to four boundary conditions can be set. It ::‘-
Xl

would only be appropriate to set four boundary conditions if the flow
M
component crossing the inflow boundary were supersonic, and therefore, the 1:
]
o
flow properties were totally dependent upon the upstream conditions. Setting ;:
three boundary conditions implies that a majority, but not all of the flow &
L
influences are coming from the upstream direction. For the present ::
(3
investigation three boundary conditions are set at the inflow boundary. !
\
s}
The boundary conditions chosen for the subsonic inflow boundary are those ::
.
ty
which reflect the properties of the flow which are most likely to be known '::
]
upstream of a turbine blade row. Specifically, the stagnation pressure, P, the N
3
stagnation temperature, Ty, and the flow angle, 6, are specified as boundary )
ket
(3
conditions at the inflow boundary. o

To determine the applicable equations at the subsonic inflow boundary, the

governing equations, equations (4.1) to (4.3), are replaced by compatibility ;
equations, equations (3.12) and (3.13). The waveline equation, equation (3.13), ::
)
is applied in three wave surfaces corresponding to the wave surface unit ,:E
normal vectors, i, fiy, and fi;, given by equations (3.14) to (3.16). At the E::n
inflow boundary the unit vector b is oriented perpendicular to the inflow '1‘.
boundary and pointing in. Thus, the wavelines corresponding to the fi, and fi, ;:T
vectors and the pathline, which are all outside the computational domain, are :5
replaced by the three boundary conditions. Only the waveline corresponding :\
to the fi;, unit vector is placed inside the computational domain. This :3
3
situation is illustrated in Figure 3-3. Thus, the applicable equations at the W

m subsonic inflow boundary are the three properties, Py, Ty, and 6, and the —

My
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c waveline equation applied along the fi; unit vector. ;
)
Po =Py, .. (4.32) 5
To = Toi"“‘“ (4.33)
6 = 6inli~\ (4'34) :
r
§
v? aﬁl'v af,;
— + —|V+ (pV), + (pe X
e T ]Pt 1 }(p )+ (oe)y
v?  an,V afi —
= |—4+—— - |V+—| 4 +% (4.35) ]
2 y¥—1 y—1
]
¢
G Equations (4.32) to (4.35) comprise an appropriate set of equations for the

inflow boundary. In previous unit process derivations, multiple compatibility ]
equations made it possible to use linear algebra to simplify the applicable
equations prior to implementation. Since only one compatibility equation is

used at the subsonic inflow boundary, it must be computed without

T e e o

simplification. This means that all the temporal derivatives in equation (4.35)

must be evaluated simultaneously. This is achieved through iteration.

The Mach number, M, is the iteration variable in the subsonic inflow

B e e -

boundary point unit process. Knowing an estimated forward time Mach
number and the boundary conditions given by equations (4.32) to (4.34),
several additional properties can be computed. In this unit process, the

density, p, the x-direction and y-direction components of momentum, pu and
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. pv, and the energy, pe, are needed at the forward time for the iterative

process. Therefore, in terms of known flow properties and the Mach number:

1
Py 1 -1
= (4.36)
RTo |14 2Ly
2
1
2
pu = PyM & Py (4.37)
— ~=1
RT, [1 +tan2(9)j 1+l§-1—M2]
pv = pu tan (6) (4.38)

G pe =P, | —— - ! : i (4.39)

The iterative process used to find property values at inflow boundary
points is described next. For both predictor and corrector steps, the iterative
procedure is initiated by guessing the forward time Mach number at the inflow
grid point being considered. For the first time step, the Mach number guess is
calculated from property values on the initial-value surface. Subsequently the
initial Mach number guess is calculated from current time level property

values. The guessed Mach number is used in equations (4.36) to (4.39) to

calculate guessed forward time values of p, pu, pv, and pe.
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Equation (4.35) is rearranged to solve for the temporal derivative of energy:
b

Xz_ + abV a
y-1

2 ~v—1

(e} =€ — V+ ]‘[(/’V)t— A | (4.40)

](pt——% )+

Temporal derivatives of density and momentum are calculated numerically
using the current and guessed forward time values of these properties. Using
these temporal derivatives and transformed space derivatives, equation (4.40)
is solved for a calculated value of pe. If the calculated and guessed values of
pe are equal, to within a small tolerance, the Mach number guess was correct
and the four guessed forward time property values are the predicted (or
corrected) property values at the new time step. If the calculated and guessed
values of pe are not approximately equal, a zero finding secant method is used
to home in on the correct Mach number. For the results presented in Section
VII, a tolerance of 107® was used to evaluate convergence of the energy

difference normalized by the value of the energy at the current time level.

For the predictor step, forward differenced space derivatives are required.
Therefore, quadratic extrapolation is used to approximate property values

outside the computational domain.

IV.6 EXIT BOUNDARY POINT UNIT PROCESSES

Because the component of the flow velocity which crosses the exit boundary
can be either subsonic or supersonic, each exit boundary point must be
checked, at each time step, to determine which unit process is appropriate. At
the exit boundary, the unit vector b is placed perpendicular to the boundary,

pointing outward, as illustrated in Figure 3-3. Therefore, at each exit
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boundary point the quantity b-V is calculated and compared to the local speed
of sound, a, to determine whether the boundary point should be handled as a

supersonic or a subsonic exit boundary point.

When the component of the fluid velocity perpendicular to the exit
boundary is less than the local speed of sound, the fluid properties at that
boundary are dependent upon both upstream and downstream phenomena.
Therefore, at least one boundary condition must be applied to the solution

procedure. This situation is discussed in Section IV.6.1.

When the component of the fluid velocity perpendicular to the exit
boundary is greater than or equal to the local speed of sound, the fluid
mechanics at the exit are only dependent upon upstream conditions. From a
characteristic perspective, this means that the base of the Mach cone (domain
of dependence) lies entirely within the computational domain. In this case the
interior point unit process is appropriate at an exit boundary point. This

situation is discussed in Section IV.6.2.

On a C-type grid, the exit boundary is a single straight line with a length
equal to the cascade blade spacing. However, the two ends of the
computational grid (£ =1 = constant and & = {_,, = constant grid lines)
make up the exit boundary. This distinction does not affect the derivation of
applicable equations at the exit boundaries. However, the computations on
these two boundaries must be implemented in a slightly different manner.
Specifically, the numerical approximation of space derivatives in the ¢

direction requires property value extrapolation beyond the exit at the
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predictor step for the { = {,, boundary, and at the corrector step for the

€ = 1 boundary. In both cases, quadratic extrapolation is used.

IV.6.1 SUBSONIC EXIT BOUNDARY POINT UNIT PROCESS

The boundary condition applied at a subsonic exit boundary point is that

the exit static pressure is known:
P =P (4.41)

Because pressure is not one of the four solution variables being computed at

each grid point, the solution procedure at the subsonic exit is iterative.

To determine the applicable equations at the subsonic exit boundary point,
the governing equations, equations (4.1) to (4.3), are replaced by compatibility
equations, equations (3.12) and (3.13). The waveline equation, equation (3.13),
is applied in three wave surfaces corresponding to the wave surface unit
normal vectors, fi;, fi,, and fi;, given by equations (3.14) to (3.16). Since the
boundary condition, equation (4.41), must be incorporated, the waveline
equation corresponding to vector fi, (which was intentionally placed outside
the flowfield) is replaced by the boundary condition. This situation is
illustrated in Figure 3-3. The applicable equations at a subsonic exit
boundary point are the boundary condition, equation (4.41), the pathline
equation, equation (3.12), and the waveline equation, equation (3.13), applied
in the remaining two wave surfaces corresponding to wave surface unit normal

vectors iy and fij:
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—

V+ M+ % (4.45)

= |0+

v?  afiyV
; }% _
2 71

Equations (4.42) to (4.45) comprise an appropriate set of equations for the

However, these equations are unnecessarily

subsonic exit boundary point.

complicated. Equations (4.43) to (4.45) each contain more than one time

derivative. Equations (4.43) to (4.45) can be rearranged into a form which is

simpler and more computationally efficient to solve by a finite difference

method. That rearrangement results in the following set of equations:

P=P (4.46) .

exit
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K]
'(,
.!
pe) —& v
pp =€ +— ( 132 (4.47) ’
2 —2abV
-1 2 ¢
{]
N
]
[(ve),—% | [u—2ab] 3
(w)e =y + = (4.48) 0
2+ — —2abV ,
’ :
c!
e),—& | [v—2ab ¥
(), = 4 PN v =2ab) (019 :
t J a2 V2 . » :
+— —2abV
¥—1 2

Equation (4.47) is solved for density and equations (4.48) and (4.49) are

e -

solved for the components of momentum at subsonic exit boundary points to

*
advance the solution in time. The value of (pe), is determined during the k!
iterative solution process. f
"f

Based on the perfect gas and no body forces assumptions discussed in e

i

G

Section II, the static pressure and the total energy are related in the following !
manner: "
P = (1=1)[pe —%oV?) (4.50) ;

v

v

This static pressure must be the specified pressure at the subsonic exit, Pgy;;- "
The following iterative process is used to calculate the flow properties at %

0!’

the subsonic exit points. The process is initiated by guessing a value for the ::
\

energy, pe, for the new time level. For the first time step, the energy value is it
obtained from the initial-value surface. Subsequently, the initial guess is set :f
‘3

at the energy value of the current time level. \
¢

%
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‘ The current time level value of energy and the value of energy guessed for
the forward time level are used to numerically calculate a value for the
temporal derivative of energy. This temporal derivative is used in equations
(4.47) to (4.49) to calculate values for the density and the components of

momentum. These values of density and momentum and the guessed forward

e Vs

time value of energy are used in equation (4.50) to calculate a value for
pressure. If the calculated value of pressure is equal to the specified exit
pressure, to within a small tolerance, the energy value guess was correct and

the calculated values of p, pu, pv, and the guessed value of pe are the property

Crae

values at the forward time. If the calculated value of pressure does not agree
with the specified exit presure, a zero finding secant method is used to home in
on the correct value of pe. For the results presented in Section VII, a
G tolerance of 107® was used to evaluate convergence of the pressure difference

normalized by the inflow total pressure.

e L VT a8

IV.6.2 SUPERSONIC EXIT BOUNDARY POINT UNIT PROCESS

At an exit boundary point, when the component of the fluid velocity

.

perpendicular to the exit boundary is greater than the local speed of sound,
the fluid mechanics at the exit are influenced only by upstream conditions. In

that case the interior point unit process is appropriate. Therefore, the

. Vg T

MacCormack method is applied directly to the transformed governing
equations in the strong conservation-law form, equation (2.33). The resulting

finite difference equations are used to advance the solution in time.
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0 IV.7 GRID CUT POINTS

All points on the grid cut lie in one of the regions discussed above.
Specifically, the trailing edge of the blade, one exit point and several interior
points make up the grid cut on a C-type grid. Therefore, no new equations
need to be derived for the points on the grid cut. However, two factors

complicate the solutions of all points on the grid cut.

1. Each physical grid point on the grid cut is represented by two

noncoincident grid points on the computational grid.

2. In the computational space, where the calculations are carried out and

where flow property values are stored, there are only grid points in the

positive 7 direction from the grid cut. Therefore, the MacCormack

C method corrector calculation can not be carried out without special
@

indexing.

These issues are resolved for the trailing edge point in Section I'V.4.

The interior points are handled as described in Section IV.2 with a few

additional steps included to resolve the problems listed above. For every

& = constant grid line intersecting the lower side of the grid cut, the

(Emax+1—E) = constant grid line intersects the same physical location on the

upper side of the grid cut. All grid cut calculations are computed at the

computational grid points which lie on the lower side of the grid cut.

Therefore, the property values at the (£,1) and (£, 2) grid points are used to

predict the 7n derivatives at the interior points which lie on the grid cut.

Then, the predicted property values at the (£,1) and ({g,,+1—¢,2) grid points
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(4
(i
49 g
q:
\
3
e are used to correct the 7 derivatives at the interior points which lie on the grid :'
cut. o
(2
8
After the property values have been predicted at ({,1), these predicted Ny
‘!
. . )
values are transferred to the (£,,,+1—E,1) predictor value storage locations ot
X
for use in the ({,,,+1—€,2) corrector calculations. After the corrector \
e
calculations have been completed, the corrected property values are ::
%
't
transferred to the (£,,+1—&,1) corrector value storage locations.
b
The exit point which lies on the grid cut is handled as described in Section :,,
v
IV.6, but, with the same additional indexing steps just described for the grid e
X,
cut interior points. : ;
&
£
X
5

"

IV.8 PERIODIC BOUNDARY POINTS

- -

-

All points on the periodic boundary lie in one of the regions discussed ::.
above. Specifically, one exit point and several interior points make up the :‘2
periodic boundary on a C-type grid. Therefore, no new equations need to be :“
derived for the points on the periodic boundary. However, three factors :E

§

complicate the flow solutions at the points on the periodic boundary. é‘
4y

1. Since the flow through a cascade is assumed to be exactly periodic, the x
property values at each point on the periodic boundary on the lower side :i

'

of the grid must be exactly the same values found at the corresponding 'E

grid point on the periodic boundary on the upper side of the grid. ’

2. In the computational space, where the calculations are carried out and ":
M

where flow property values are stored, there are only grid points in the

(]
Q .l
Wy

"

Q
\
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%
&
. negative 7 direction from the periodic boundary. Therefore, the ;E*:
MacCormack method predictor calculation can not be carried out ‘

Y
without special indexing. ':E
)
3. At the periodic boundary grid point adjacent to the inflow boundary, p
there are two grid points upstream of this point along 7 = constant grid '::
lines. Therefore, a decision must be made concerning how to calculate :.:E:
the £ space derivatives at these leading periodic boundary grid points. !!'
I
The periodic boundary interior points are handled as described in Section ::‘
N3
IV.2 with a few additional steps included to resolve the problems listed above. :é»
For every { = constant grid line intersecting the the periodic boundary on the :;
. A
lower side of the grid, the ({;,,+1—&) = constant grid line is the :E
corresponding grid line on the upper side of the grid. All periodic boundary E;
G calculations are computed at the computational grid points which lie on the i:‘,
periodic boundary on the lower side of the grid. Therefore, the property :é
values at the (&, 7p.y) 20d (Epax+1—E, Mmax—1) grid points are used to predict '
the 7 derivatives at the periodic boundary points. Then, the predicted :.:E
property values at the (£, 7y,,) and (€, ny.,—1) grid points are used to correct .:;
the n derivatives at the periodic boundary points. After the corrector .'
calculations have been completed, the corrected property values are é::;t
transferred to the (€ ,,+1—E, Nmax) corrector value storage locations. .:'\
The special periodic boundary points which lie adjacent to the inflow "
boundary are handled as discussed above with one additional consideration. -
¥
4

Both predictor and corrector £ space derivatives are calculated entirely on the



51

7 = Ymax = constant line on the lower side of the C-grid. In other words,
property values at (£, 7,.,) and ({+1,7,,) are used to calculate the predictor
space derivatives at (,7pg,y). Therefore, property values at (§,..—&, Tmay)

are not used to approximate property derivatives at this special point.

The exit point which lies on the periodic boundary is handled as described

in Section IV.6, but, with the same additional indexing steps just described for

the normal interior points which lie on the periodic boundary.
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SECTION V

GRID GENERATION

Two of the major problems facing an analyst when constructing the
numerical solution of partial differential equations are: the numerical
implementation of the boundary conditions along the boundaries of the
physical space, and the seiection of the finite difference mesh to represent the
continuous physical space. The boundaries of the physical space do not
generally lie along coordinate lines formed by an equally spaced orthogonal
grid system. When first-order accuracy is acceptable, boundary conditions can
be implemented along arbitrary lines in the physical space and/or
computations can be carried out on variable meshes. However, when higher-
order accuracy is necessary, the above factors present serious difficulties. This
has led to the extensive use of coordinate transformations to map the
boundaries of physical space onto coordinate lines of a transformed space and
to map nonuniform, nonorthogonal grids in physical space into uniform,
orthogonal grids in transformed space. Once computational and physical grids
have been generated, the numerical solution is implemented using the

appropriate transformed governing equations.
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.:
@ In this section the elliptic partial differential equation grid generation “,
v
method chosen for the present investigation is discussed. More details are
li
provided in Appendix E. Information describing the transformation of the .‘;
A
s
governing equations is prasented in Section II and in Appendix A. ot
3
)
V.1 POISSON-TYPE CASCADE GRIDS o
'f
In this research, a Poisson-type elliptic partial differential equation grid ¢
(A
generator is used to generate physical grids around cascade blades. Poisson’s ¢
0
¢
equation, applied to the generic variable f(x,y), is presented in equation (5.1). :
)
22 . Lt
Vi = fiy + fyy = F(x,y) (5.1)
5
When multidimensional grids of this type are generated, one Poisson equation :‘
'l
q
is used for each space dimension. ),
¢ -
For a two-dimensional Poisson-type grid generator, the following Poisson 5
.'
L4
equations must be solved numerically: ::
g
72 ot
VEE =&, + $y=P (5.2)
ot
4
¢
v2n =Nyx + Nyy = Q (5.3) ¢
.‘.
where P and Q are the nonhomogeneous source terms. The freedom to specify .
these source terms in each Poisson equation provides the capability to control !
4
the relative point distribution in the interior of the grid. For example, ‘
o
i ¥
coordinate surfaces can be clustered near a solid boundary or near an inflow i
. e
X boundary. This capability, as it has been applied in the present investigation, :‘l
\ )
is discussed in more detail in Section V.2. ::
B :
. | 3
gt

FaE acaarm oy ER AN - - LY T, AN LS TR RS R LTS LT
R N D I DA O N N I D DDA DS OO R S OO Dot W M O W AN L N DY o WA Pk a A



o

@

U UL NN ET S VST NSRSV N PRATAIR WA N MR AUN TOM T P TOTTUR P T PUN TN PO TS TUN AT TN OO O O RTINS
.

54

Figure 5-1 is an example of the C-type grids used in the present
investigation. Additional examples are presented in Appendix E. The name
is descriptive of the shape of each of the members of the family of grid lines

that surrounds the blade.

Solving equations (5.2) and (5.3) numerically would be simple if the
computations could be carried out on the physical grid. Unfortunately, due to
unequal spacing in this grid, only first-order accuracy can be achieved using
this approach. Therefore, the Poisson equations are transformed to the
equally-spaced orthogonal computational domain and solved there. The

transformed Poisson equations are:

axge — 25%¢, + X, = —-12(Px.\~ + Qx,) (5.4)

i

ay{{ - 23}’{:; + "YyI/I[ = -IZ(PY( + QY,,) (55)

where I=x;y, —x,y, is the Jacobian of the inverse transformation and

L2 2
= X,/ + Yr,
B =xx, +yey,

n oy 2 2
;=X +Y{

For the C-type grid, all boundary point locations are specified as Dirichlet
boundary conditions as described in Appendix E. A modified successive over-
relaxation (SOR) technique is used to solve equations (5.4) and (5.5), thereby
locating the interior points. Like a normal SOR procedure, the iterative

corrections at each point are over-relaxed. However, corrections to the values

Ly
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Figure 5-1. C-type grid for the AACE 1l cascade blade.
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of the nonhomogeneous terms, P and Q, are under-relaxed each iteration. A

description of these nonhomogeneous terms is presented next.

V.2 CONTROL OF GRID GEOMETRY NEAR
BOUNDARIES

For the grids generated to support this investigation, the nonhomogeneous
terms in the Poisson equations are used to control grid geometry based on the
features of the grid at the y =1 and 7 = #,, boundaries. Specifically, along
the blade surface, grid cut, and inflow boundaries, the following two features

are controlled:

1. Grid line spacings from points on the inner and outer boundaries to the
corresponding points on the first grid line inside each of these boundaries )

are specified.

2. Intersection angles between these same boundaries and the ¢ = constant

grid lines intersecting them are specified. /

Similarly, along the periodic boundaries the following two features are ,

contcrolled:

1. Grid line spacings from points on the inner and outer boundaries to the
corresponding points on the first grid line inside each of these boundaries

are specified. !

2. Slope of the { = constant grid lines in the physical plane where they
cross the periodic boundaries is specified. The slope used is the tangent

of the cascade stagger angle.
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Q By dictating these specific grid features, grid point locations throughout

the interior of the grid are controlled.

V.2.1 GRID CONTROL AT BLADE SURFACE, INFLOW, AND GRID CUT

BOUNDARIES

Steger and Sorenson [1| have developed techniques to implement the /
controls deseribed above. Some modifications to their method have been

developed for this research effort.

Equations (5.4) and (5.5) are solved for P, and Q,, which are the P and Q

values on the =1 and » = ),,, boundaries.

Py, = J(y,R; —x,R,)

Wi andary

G‘ Qp = J(—yeR; + x(Ry) l’“‘“"“““" (5.7)

where

R'l — _‘]2((1x{£ - 2[)7)(3,/ + 'Yx/m) I

’Ilumnlnry

R2 = _J2((Yy£{ el 2,3y{,, + WI/I/) |’)(~-u.-(:|r.\' f

Values of Py, and Qy are calculated at each point on each of the 7 = constant

L%

- boundaries using equations (5.6) and (5.7). Since all points on both of these

boundaries are specified, x;, y¢, X¢¢, and y¢¢ are calculated from input data.

The key to Steger and Sorenson’s method is their evaluation of x, and y,. 3
They derive expressions for x, and y, by first considering the desired offset

distance, AS, which is the distance in the physical space from the boundary )

ERENTIRANIL IR M R YR ) 7 *, ¥ e Yo ¥ Y ¥ 3 NN b Nl N !
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Q point, along 2 & = constant grid line, to the corresponding point one grid line
inside the boundary. Thus,
AS = [(Ax)? + (A¥)°] " | - constant (5.8)
In the limit:
dS = [(dx)* + (49)*]" f¢ = constant (5.9)

From the partial differentiation chain rule,

dsS = [(X(df + x:/d7/)2 + (y£d’$ + yr/d7/)2] K { = constant (5'10)

Since dS/dn represents the distance between two points on the same

- = constant line, d§ = 0. Therefore, equation (5.10) reduces to:

ds 2 2t

C -a_ = [(X,,) + (y:/) ] |£ = constant (5'11)
@

Ui

The second grid geometry control feature which Steger and Sorensen
address is the grid line intersection angle at the periodic boundary. This

control is implemented using the vector dot product:

V&V = IVE’ V7 | cosb (5.12)

where 6 is the desired intersection angle (6 = 90° yields orthogonal grid line
intersec-tions). Equation (5.12) is the definition of the dot product of the
vector normal to the & = constant grid line with the vector normal to the
n = constant grid line. Carrying out the vector arithmetic and incorporating
the transformation metries ({, =Jy,, & =—Jx, n, = —Jy; and 7, = Jx)

into equation (5.12) yields:
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@ xex, + vy, = —l(x] + y))x¢ + y§))” cost (5.13)

Solving equations (5.11) and (5.13) simultaneously to determine the necessary

values of x, and y, required to meet these two conditions yields:

ds (—x.cost/ — y,sinf)

X, = y (514
o dy (x{ + )" )
ds (—~y¢cost + x,sinb) o

y, = — : (5.15)

dy (x{‘? + y{z)'/"

Both 6 and dS/dy are input discretely as functions of ¢ on each of the
11 = constant boundaries. Once the values of x, and y, on the boundaries are

known, the cross derivatives x,, and y,, needed in equations (5.6) and (5.7) are

calculated numerically by differencing x, and y, with respect to {. Therefore,
C the only remaining unknowns on the right-hand side of equations (5.6) and
L

(5.7) are x,, andy,,. The approach used by Steger and Sorenson is to

0y

numerically calculate x,, and y,, during each SOR iteration.

Iy
Once all the necessary derivatives have been determined, Py and Q, are

calculated using equations (5.6) and (5.7). For the sake of stability, Py and Q,

corrections are severely under-relaxed during each SOR iteration.

b
! In order to smoothly propagate the P and Q effects throughout the grid,
these quantities are exponentialiy extrapolated into the interior of the grid
using equations (5.16) and (5.17).
P(E,n) = P(E’l) e_a('/"l)/(’/m:n‘l) + P(&"r’max) e_b('lnmx .l.)//’\I/II\.‘I\~1) (5.16)
-
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Q(Ey'fl) = Q(&,l) e_C(l/—l)/(,/"m—l) + Q(&’”max) e_d(’/lll-'i\-I’)/(I/""“—]) (5.17)

The terms a = a({), b = b({), ¢ = ¢(&), and d = d({) are positive decay rates
used to control the exponential decay of the P and Q effects into the interior
of the grid. Equations (5.16) and (5.17) differ slightly from those developed by
Steger and Sorenson |1] in that the exponents have been normalized by
("max—1)- A zero finding secant method is used to home in on the appropriate
decay rates at each value of £ on each of the n = constant boundaries. Since
the theory behind this technique is developed in the limit of infinitely small
space increments, but is applied to a finite size grid, the exact grid control

requested will be approached, but not achieved exactly.

V.2.2 GRID CONTROL AT PERIODIC BOUNDARIES

A variation of Steger and Sorenson’s technique has been developed during

this investigation for the periodic boundaries of the cascade grid.

By forcing the { = constant grid lines to cross the periodic boundary at the
cascade stagger angle, 7, unnecessary grid line skewness is avoided. Since this
§ = constant grid line slope control is more appropriate along the periodic
boundary than ¢ = constant grid line intersection angle, the following

equations replace equations (5.14) and (5.15):

dS .

x, = -(E sin(7) (5.18)
ds

Y, = H cos(7) (5.19)
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SECTION VI 4

SOLUTION PROCEDURE

In the present investigation, the flowfield solution procedure comnsists of

three major steps. First, grid points are placed around the boundary of the

C—type grid. Second, the Poisson-type grid solver is used to locate all interior
points. Third, the MacCormack flow solver is used to determine properties
throughout the flowfield. The boundary point placement procedure and the
e grid solution procedure are described in Section V and in more detail in

Appendix E. The flow solver solution procedure is described in this section.

. The steady state flowfield solution is calculated as the asymptotic time \
dependent solution. Prior to the first time step, an initial property value
surface is esiablished. The calculation of initial property values is discussed in

Section VI.1.

Because the grid is stationary, transformation Jacobian and metric values
are calculated once, prior to the first time step, and used at every time step.
! As demonstrated in Appendix A, in order to avoid erroneous source terms,
transformation metrics must be differenced in the same manner as property
derivatives are differenced. Therefore, one-sided forward-differences are used

to calculate metric values used in predictor calculations, and one-sided
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backward-differences are used to calculate metric values used in corrector
calculations. Centered-differences are used to calculate Jacobian values for

both steps of the MacCormack calculations.

VI.1 INITIAL-VALUE SURFACE

Prior to beginning the time stepping procedure, property values are
assigned to each grid point in the flowfield. The closer these initial values are
to the final, steady state solution, the quicker the solution will converge to the
steady state. Property values are first assigned on all the computational
boundaries, in accordance with the appropriate boundary condition
constraints. Values for the interior points are then interpolated from the

boundary values.

The inflow total pressure and the exit static pressure are used to compute
an approximate exit boundary Mach number, and in turn, the velocity
magnitude at the exit boundary. The inflow total temperature, total pressure
and the exit Mach number estimate are used to calculate the exit boundary
density and total energy. The velocity components are specified by assuming
the flow to be parallel to the grid cut at the exit boundary. Momentum
components are the product of the respective velocity components and the
density. All points on the exit boundary and on the grid cut, including the

trailing edge, are set to these exit boundary property values.

The x-direction velocity component on each point on the periodic and
inflow boundaries is assumed to be equal to the value of u calculated for the

exit boundary. On the periodic boundary, v is then specified by assuming the
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flow to be parallel to that boundary. On the inflow boundary v is set in

accordance with the input inflow angle. Using the velocity magnitude and the

inflow total properties, the Mach number is calculated at each point on these

twe boundaries. Then using the Mach number and the total properties, the

density and energy are calculated at each point.

On the blade surface, the x-direction component of velocity is agaiu

assumed to be equal to the exit value except at the leading edge where a

stagnation region is specified. The y-direction component of velocity is then

assigned so that the velocity is everywhere parallel to the blade surface. The

density and total energy are then determined as described above.

Once all relevant property values have been calculated at all boundary

M T N 2

points, interior point values are determined by interpolating, between

boundaries, along ¢ = constant grid lines.

V1.2 TIME STEPPING PROCEDURE

The flow solver time stepping procedure consists of smoothing the property

values at the current time level, calculating the appropriate time step at every

grid point, predicting and correcting solutions to the inviscid flow equations

which are appropriate for each point, and testing the solution for convergence.

As described in Section IV.4, both the predictor and the corrector

calcuiations are included in the iterative process at the trailing edge point.

Therefore, to advance the solution in time, the following sequence is :

established. All points on the grid, except the trailing edge point are

(
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predicted. Then the trailing edge point is iteratively predicted and corrected.
Finally, all remaining points are corrected. This process is repeated,
advancing the solution in time, until convergence has been achieved at all grid

points, to within a specified tolerance.

V1.2.1 TIME STEP CALCULATION

The magnitude of the time step used to calculate properties is regulated by
the Courant Friedrichs Lewy (CFL) stability criterion [24]. Enforcing the CFL
restriction insures that the domain of dependence of the partial differential
equations (the Mach cone) falls within the domain of dependence of the finite
difference equations (the convex hull). The convex hull for the MacCormack

method is outlined with bold lines in Figure 6-1.

In the present investigation, a conservative approximation is used to
estimate the CFL limit which is appropriate for each grid point. At each
point, the distance between the point and the nearest point on the convex hull
is calculated. Since the grid is stationary, the minimum distance
corresponding to each grid point is calculated once, stored, and then used each
time the time step limits are recalculated. The.ve]ocity vector is assumed to
point away from the closest point on the convex hull. Based on this

assumption, the desired time step limit is:

d

Atopr = (6.1)
l; |+a

is the

where d is the shortest distance to the convex hull boundary, }V
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velocity magnitude, and a is the local speed of sound.

The local CFL time step limit can be calculated and used at each grid
point. This local time step procedure produces a stable and rapidly
converging solution. However, the transient is not accurate with respect to
time since different time steps are applied at each grid point. In order to
achieve a stable and time accurate solution, the smallest time step calculated
for any point on the grid (global time step) must be used at every point on the
grid to advance the solution in time. Both options are available in the codes

developed in the present investigation.

In order to provide the flexibility to limit the time step further, time step
multiplying factors are used. Two time step multiplying factors are input.
Generally the initial time step multiplying factor, with a value around 0.7, is
used to promote stability for the potentially rough initial-value surface. Afics
a specified number of time steps, a time step multiplying factor of around 1.0

is substituted and used to advance the solution to convergence.

Because the properties in the flowfield are changing, the CFL limit at each
grid point changes in time. Since a conservative CFL estimate is being used,
computational effort is reduced by updating the time step limits after several

(usually 5) time steps, rather than after every time step.

V1.2.2 EXPLICIT SMOOTHING

A numerical solution to the unsteady Euler equations can be limited by

stability considerations. In other words, if the numerical solution to a set of
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unsteady partial differential eqr tions diverges rather than predicting a

bounded solution to the equations, no useful information is derived.

As discussed in the previous section, a stability analysis for a particular
numerical method applied to a particular set of partial differential equations
produces a time step limitation which, if exceeded, will lead to divergence.
Unfortunately, common stability analysis techniques only predict the stability
criterion applicable to a simplified linear model equation in the absence of the
boundaries of the computational domain. Therefore, even when the calculated
stability restrictions are enforced, instabilities can still occur. In particular,
when numerically solving the Euler equations, nonlinearities in the equation
formulations, various boundary condition implementations, and flow solution
phenomena such as shock waves and stagration points, often cause numerical
instabiliiies. Explicit artificial dissipation, or smoothing, is usually applied to
overcome these instabilities. An extensive discussion of artificial dissipation is
provided in Appendix F. The specific smoothing techniques used in the

present investigation are summarized here.

The current research effort employs a conservation variable form of the
Kentzer method at the flowfield boundaries and the MacCormack method
throughout the flowfield. This combination requires some explicit dissipation
to avoid divergence. Specifically, the blade surface boundary appears to
generate instabilities. However, when a small amount of smoothing is applied

over the majority of the grid, excellent results are achieved.
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@ The general formula used to smooth each of the four dependent

conservation variable properties p, pu, pv, and pe, is:

fsmoothed = f+ At (:2 [SfEQ f{{ -+ Sf’f].z f’l’/ ] (62)

where f is one of the solution properties, At is the time step, ¢2 is a property

independent variable coefficient, and sf{, and sf7, are grid dependent scaling by
)"

factors. h
Ly

)

All the smoothing terms in equation (6.2) are multiplied by the time step. 4
‘.‘
This causes the smoothing to be scaled at the same magnitude as the space X3

derivatives in the Euler equations. In addition, if local time steps are being :

used rather than global time steps, multiplication by the time step will cause 3
more explicit artificial dissipation to be added where larger time steps may be
ﬁ allowing instabilities to grow faster. ‘
%

The property independent coefficient, c,, sets the magnitude of the ::
smoothing for the entire flowfield. In order to keep a rough initial-value ‘::(
surface from diverging and yet avoid excessively smearing the final solution, .-,
U

this coefficient is linearly decreased in time. The upper and lower limits of ¢, '5
0

are input along with a multiplying factor which is set to approximately 0.999. .:.

At each time step, the value of ¢, is multiplied by this factor until the lower

'h-

N

limit of c, is reached. At all subsequent time steps ¢, is maintained at the 3
lower limit. .{
“’

The grid dependent scaling factors, sf, and sf7,, are used to efficiently '

N

correct unwanted, grid dependent scaling of the dissipation derivatives, f;; and o:*‘
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f

- Without these factors, the dissipation derivatives have less of an effect in
areas of the physical grid where grid points are densely packed than in areas
where grid points are sparse. It is desirable to eliminate this effect without the
added computational effort of computing transformed physical derivatives at
every time step. Therefore, a procedure has been developed to rescale
property derivatives which are taken with respect to computational directions.

As explained in Appendix F, the following equations for sf{, and sf1, provide

the desired effect.

Sf€, = 4 (6.3)

(Xi+1,j _xi—l,j)z + (yi+1,j “Yi—l,j)2

2
(% j+1 _xi,j—l)z +(¥ij+1 ~Yij-1)

The cascade grids used for the present investigation do not change with
time. Also, sf€, and sfn, are only functions of grid point locations. Therefore,
sf, and sfn, are calculated once and stored, prior to the first time step.

These stored values are then used at every time step.

At the blade surface and trailing edge boundaries, smoothing is only
applied tangent to the boundaries. At these boundaries the momentum
magnitude is smoothed and then split into x and y components to insure

tangency.
No smoothing is applied at the inflow or at the exit boundaries.

Interior points on the periodic boundaries and grid cut boundaries are

smoothed like other interior points, but with special indexing required due to
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@ the locations of these boundaries on the computational grid.

V1.2.3 CONVERGENCE CHECK

With unchanging boundary conditions, sufficient time stepping will lead to
asymptotic values for all properties at all grid points. This set of property

values is the steady state solution for the flowfield.

In the present investigation, experimentation with the code reveals that the
total energy is the slowest of the four solution variables to converge.
Therefore, changes in the total energy are monitored to determine the level of

convergence.

At the end of each time step, the change in tota.l energy at each grid point

is calculated, normalized by the total energy at that grid point, and compared

G to an input tolerance value to determine if the solution has converged
sufficiently. For all results described in Section VII, solutions were converged

to a tolerance of 107°.

Care is taken to avoid the effects of smoothing on the convergencé check.
Prior to smoothing the solution at any time level, the newly calculated energy
values are stored and are compared to the energy .alues stored at the previous

time step.
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SECTION VII

RESULTS

The final step in the development of the Euler solver in the present

investigation is the evaluation of the capability of the code. This evaluation

R Ve

includes testing the code over the range of relevant cascade environments. To ¥
this end, eight numerical case studies have been completed and evaluated. ]

One case was chosen as the baseline test case. All other cases differ from the

e baseline case by varying one or more parameters. The results of those case
]

studies are discussed in this section.

P T
>

VII.1 NUMERICAL TEST CASES A

Table 8.1 summarizes the case studies used to evaluate the flow solver.

The following three parameters were varied:

-. 1. Blade geometry. qQ
| ¢
2. Mach number regime. :ﬁ
3. Grid density.
\ The Mach number regime was varied by varying the ratio of inflow total o
‘ pressure to exit static pressure. .
& '
Y
\
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Table 7-1. Cascade numerical test cases.

€0 avh a'D ots av8 a?h 2%

Test | Cascade | Numerical Grid Mach Time Inflow Exit
Case Method Dimensions| Number Step |Total Press.! | Static
Exn Regime | Mode |Total Temp.?|Press.!
_(Factor)l Flow Angle3
1* | AACE Il |MacCormack| 165 x 13 |Transonic| Local 96904.0 55981.0
(1.0) 300.0
0.0
2 {AACEINl| MO C® | 165x13 |Transonic| Local 96904.0  [55981.0
(1.0) 300.0
00
3 {AACEII [MacCormack| 83 x7 |Transonic| Local 96904.0 55981.0
(1.0) 300.0
0.0
4 |AACEIl MOC 83x 7 |Transonic| Local 96904.0 55981.0
(1.0) 300.0
0.0
5 | AACE Il [MacCormack| 165 x 13 | Subsonic | Local 96904.0 66327.0
(1.0) 300.0
0.0
6 | AACE Il [MacCormack| 165 x 13 High Global 96904.0 37308.0
Transonic| (0.65) 300.0
0.0
7 |GMA 400 MacCormack| 195 x 11 | Subsonic | Local 96904.0 64392.0
(1.0) 300.0
424
8 |GMA 400 |MacCormack| 195 x 11 High Local 96904.0 53976.0
Subsonic | (1.0) 300.0
42,6
1 Pascals
2 Kelvin
3 degrees

4 baseline case
5 numerical method of characteristics
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Two different cascades were evaluated in the present investigation. The
AACE I [6] and the GMA 400 [7] cascades were chosen for several reasons.
First, both of these cascades are representative of modern turbine blade
geometries. In addition, the cascades differ significantly from each other.
Finally, high quality experimental blade surface pressure data are available for

both of these cascades.

In order to meet the needs for maximum power extraction, minimal shock
losses, and light weight component designs, turbines are usually designed to
operate with maximum Mach numbers only slightly in excess of Mach one.
Therefore, to verify the ability of this code to evaluate the relevant range of
turbine Mach numbers, test cases were chosen with maximum Mach numbers

varying from approximately 0.8 to 1.35.

The MacCormack method is second-order accurate in time and space.
Therefore, the density of the grid used to discretize the flowfield has a great
effect on the accuracy of the results of the numerical studies. In order to
evaluate the dependence of the flowfield solutions on grid point density, two
different grid densities were used. For most test cases, grids with 2145 grid
points (165x13 or 195x11) were used. For two of the test cases involving the
AACE 1I cascade, a grid with 581 (83x7) grid points was used. Grid points
were placed with similar relative point density distributions on both AACE II
grids. The coarse grid represents a decrease in grid density of approximately
half in each of the computational directions. This decrease should result in a

four fold increase in numerical error.
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The three grids discussed above are illustrated in Figures 7-1 to 7-3.
Figure 7-1 is the high density (165 x 13) AACE II grid. Figure 7-2 is the low
density (83 x 7) AACE II grid. Figure 7-3 is the high density (195 x 11) GMA
400 grid. The dimensions of the two high density grids differ because the
solidity (chord length over blade spacing) of the GMA 40C cascade (1.83) is

greater than the solidity of the AACE II cascade (1.30).

The predictions of all of the test cases were compared against experimental
results. The experimental results consisted of blade surface static pressure
measurements for each of the cascades. Because the experiments were all run
with air at approximately standard sea level pressure and temperature, the

numerical studies were run under the same conditions.

The numerical method of characteristics is recognized as an excellent
numerical method because it so accurately matches the fluid physics it models.
An inviscid numerical method of characteristics cascade flow solver has been
developed as part of this research effort. The characteristics code is described
in Appendix C. This code is used in the present investigation as another
verification of the primary, MacCormack code. Therefore, the results of two
of the primary code test cases mentioned above are compared to the results of

the numerical method of characteristics code.

VII.1.1 TEST CASE 1

Case 1 is chosen as the baseline test case for the following two reasons.
First, in addition to experimental results and results from the numerical

method of characteristics code developed for the present investigation, the

-
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AACE II blade has been studied by Delaney [14] and Kemry [15]. Second, the
pressure ratio across the blade row predicts an average exit Mach number of
0.9211. This suggests that flow slightly in excess of Mach one should be
expected in the flow passage near the suction side of the blade. This is

representative of turbine blade row design conditions.

In addition to being representative of turbine design conditions, the range
of Mach numbers present in the baseline case flowfield provides an excellent
test of the numerical scheme. For this case, a large region between the
cascade blades contains fluid flowing at Mach numbers between 0.9 and 1.1.
Property gradients are large in flowfield regions where this range of Mach
numbers exist. When flowfields are solved numerically, high property
gradients tend to cause correspondingly high numerical errors. Therefore, the
accuracy with which fluid properties are calcuilated in these regions of the

flowfield demonstrates the capability of a numerical method.

Figure 7-4 presents the blade surface pressure for the Case 1. As
illustrated, the numerically calculated blade surface static pressure
distribution agrees quite well with the experimental results. Over the first
seventy percent of the pressure side of the cascade blade, the pressure values
match almost exactly. From the seventy percent point to the trailing edge

region the calculated pressures slightly exceed the measured values.

Both the experimental and numerical results show two low pressure (high
speed) regions on the suction side of the blade. Between the midchord of the

suction side and the trailing edge region of the pressure side, the flow is
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Figure 7-4. Test Case 1. Blade surface normalized static pressure.
AACE 1I cascade, baseline case.
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accelerated because of the flow passage restriction. Just upstream of

trailing edge the flow is again accelerated. Figures 7-5 and 7-6 illustrace

flowfield static pressure and Mach number contours, respectively.
contours in each of these figures reveal these high speed, low pressure regi

Figure 7-6 reveals a small supersonic pocket at the second location. These

low pressure regions are evident, to some extent, in all test cases considered

for the AACE II cascade. The calculated results predict slightly less pressure

variation across the suction side of the blade than do the measured data.

The blade trailing edge is the only location where the calculated pressure

differed drastically from the measured pressure. Accurate calculations at
trailing edge are virtually impossible, especially with an inviscid code.
review of the literature reveals that numerical analysts usually try to keep
trailing edge calculations from diverging and from adversely affecting
solution upstream of that region. See for example, the results of Delaney

Srivastava et al. [17], and Kwon [18].

One factor used to calculate turbine blade row work is the circumferential
component of the force exerted by the fluid on the blade. This force can be

calculated by integrating the circumferential component of the pressure

difference between the two sides of the blade, over the axial component of

chord. Based on this method of evaluation, the pressure discrepancies
generated at the trailing edge, by the present effort or any of the other efforts

just cited, are completely acceptable. Further discussion of the trailing edge is

presented in Section VIL.3.
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Figure 7-5. Test Case 1. Static pressure contours.
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VII.1.2 TEST CASE 2

The flow conditions of Case 2 are identical to those of Case 1. However, in
Case 2 the numerical method of characteristics code, rather than the
MacCormack code, has been used to predict the flow properties. The results

are very similar to the results of Case 1.

As illustrated in Figure 7-7, the characteristics code predicts nearly exactly
the same pressure distribution on the pressure side of the blade as the primary
code. Similarly, the trailing edge poin* pressure prediction is close to that

predicted by the primary code.

As compared to the experimental data, the characteristics code slightly
under-predicts the pressure on the suction side of the the blade, just aft of the
leading edge. This discrepancy is also produced by the primary code, as
shown in Figure 7-4, but at less than half the magnitude as by the

characteristics code.

The pressure variations on the aft half of the bladc are resolved more
accurately by the characteristics code than by the primary code. Both codes
show the greatest discrepancy between the computed surface pressures and
measured surface pressures on the aft half of the suction side of the blades.
Both under predict the pressure variations in that region. Specifically, both
predict that the static pressure values in that region are slightly higher than
the measured values. However, the characteristics code predicts the two low

pressure regions on the suction side of the blade more accurately than the

primary code.

-
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Figures 7-8 and 7-9 illustrate static pressure and Mach number contours,
respectively, for the flow passage. The pressure contours shown in Figure 7-8
reveal that the characteristics code predicts slightly lower pressures on the
second half of the suction side of the blade as compared to the MacCormack
code predictions. Figure 7-9 shows a larger supersonic bubble computed by
the characteristics code in the high speed region just upsiuream of the trailing

edge.

VIL.1.3 TEST CASE 3

The flow conditions and the numerical method of Case 3 are identical to
those of Case 1. However, in order to evaluate the accuracy of the method,
the flow is solved on the coarse grid shown in Figure 7-2. In some regions of
the flowfield, the results are very similar to the results of the baseline case. In

other regions, significant resolution is lost on the coarse grid.

Figure 7-10 presents the blade surface pressure for Case 3. As this figure
shows, the suction side pressure distribution predicted on the coarse grid is
almost identical to that predicted on the fine grid. Some resolution very near
the trailing edge is lost on the coarse grid. However, the static pressure
predicted immediately at the trailing edge is closer to the measured value.

This anomaly is addressed in Section VII.3.

The property value resolution at the leading edge is reduced on the coarse
grid. Figure 7-10 reveals that the maximum static pressure predicted on the
blade surface near the stagnation point at the leading edge is only 98 percent

of the inflow total pressure.
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Figure 7-8. Test Case 2. Static pressure contours.
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Figure 7-9. Test Case 2. Mach number contours.
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Figure 7-10. Test Case 3. Blade surface normalized static pressure.
AACE 11 cascade, coarse grid.
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:
0 The calculated pressure distribution on the aft half of the suction side of 4
the blade differs significantly from that predicted on the dense grid. The two A
distinct low pressure regions predicted by both codes on the dense grids and ‘
g
measured experimentally, are smeared together on the coarse grid. The code .:
predicts a nearly constant pressure level over this part of the blade. This &
predicted constant pressure level is approximately equal to the actual average
pressure for the region. However, the chordwise variation of pressure is lost.
Figures 7-11 and 7-12 illustrate static pressure and Mach number contours, Et
respectively, for the flow passage. Figure 7-11 reveals the same loss of :
resolution discussed above. The pressure contours shown in this figure are
very similar to those shown in Figure 7-5 except on the aft half of the suction l’
side of the blade. The coarse grid solution shows just one large region of :t:
G pressure between 50 kPa and 55 kPa. Similarly, the Mach number contours in 4
Figures 7-6 and 7-12 are very similar except in the region of the flowfield near :‘
the aft half of the suction side of the blade. :E
Increased grid density also results in increased computational costs.
1
Therefore, the improved resolution supplied by higher density grids must be i
considered in the light of added computational expenses. In addition,
successively denser grids will provide diminishing improvements in flowfield :'
resolution. Certainly, grid resolution is sufficient when significant increases in :’
grid density produce relatively insignificant improvements in flowfield :
resolution. Because of the large increases in solution accuracy near the aft '
suction side of the blade, and to a lesser extent, near the leading cdge d

stagnation point, it is obvious that the coarse grid is inadequate. Sinc. the
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Figure 7-12. Test Case 3. Mach number contours.
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0 denser grid resolves all the major flow features, it is adequate.

et

In addition to higher computational expenses, increasing the density past

that of the dense grid shown in Figure 7-1 is constrained by considerations

fLo A

discussed in Section VII.3.

O:o

"

VIL1.4 TEST CASE 4 "
)

The flow conditions of Case 4 are identical to those of Cases 1, 2, and 3. "
Like Case 2, Case 4 compares the results of the primary code to those of the I
!

4

numerical method of characteristics. As before, the two numerical methods 3
g

¢

produce similar results, with some tradeoffs, but with slightly better :
ﬂ

performance by the characteristics code in the regions of the flowfield which ::‘
NS

have proven difficult to resolve accurately. Figures 7-13 to 7-15 illustrate the '“:E
t‘ results obtained by the numerical method of characteristics solved on the low L
!"

density grid. ::'f
W

. L. . W,

Cases 1 through 4 all predict very nearly the same pressure distribution on )
the pressure side of the blade. On the other hand, the characteristics code .:i
.

resolves the leading edge stagnation point as well on the coarse grid as on the N+
dense grid. 2
Unlike the primary code operating on the coarse grid, the characteristics ‘

7

code does distinguish the two low pressure regions on the suction side of the s
blade. However, the resolution is not as good as is produced by either of the .
o

numerical methods used in conjunction with the dense grid. ":
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Figure 7-13. Test Case 4. Blade surface normalized static pressure.
AACE Il cascade, method of characteristics, coarse grid.
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VIL.1.5 TEST CASE 5

Test Case 5 is the first case with flow conditions which differ from those of
the baseline case, test Case 1. In order to test the code in a totally subsonic
flowfield, the MacCormack code was run at a pressure ratio across the blade
row which corresponds to an average theoretical exit Mach number of 0.76.
As with Cases 1 and 2, this case is solved on the dense AACE II cascade grid

shown in Figure 7-1.

Figure 7-16 presents the blade surface pressure for Case 5. As shown in
this figure, the experimental results corresponding to this case differ from those
of the baseline case in a few respects. The most noticeable difference is the
shallowness of the low pressure region on the suction side of the blade, just
upstream of the trailing edge. In the baseline case, this region contains the
lowest pressure on the blade. In this case, the pressure is nearly constant over

the last 35 percent of the blade.

The measured pressure distribution over the remainder of the blade,
including the high speed region near the center of the suction side of the
blade, ifery closely resembles the pressure distribution over the blade in the
baseline case. As should be expected with a higher downstream pressure, the

blade surface pressures measured for Case 5 are slightly higher than those

measured for the baseline case.
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Figure 7-16 demonstrates good agreement between the calculated and the
measured blade surface pressures. The MacCormack code predicts pressures
which are nearly exactly the blade surface pressures except in the low pressure
region in the center of the suction side of the blade and on the aft thirty
percent of the pressure side of the blade. In these regions, the calculated

pressure is as much as six percent higher than the measured pressure.

The pressure and Mach number contours for Case 5 are presented in
Figures 7-17 and 7-18. The maximum Mach number shown in Figure 7-18 is

0.80. This confirms that the entire flowfield is subsonic.

VIL.1.6 TEST CASE 6

In contrast to.Case 5, Case 6 tests the capability of the MacCormack code
to calculate the flow through the AACE II cascade in the high transonic Mach
number regime. For Case 6, the pressure ratio across the blade row
corresponds to a theoretical average exit Mach number of 1.25. Again, the
dense AACE II cascade grid, shown.in Figure 7-1, is used to discretize the

flowfield.

Figures 7-1.9 to 7-21 illustrate the results obtained for Case 6. As shown in
these Figures, the experimental results corresponding to this case differ
significantly from those of the previous cases, especially over the second half of
the blade. As Figure 19 illustrates, the shape of the pressure distribution on
the pressure side of the blade is similar to the previous cases, but the pressures

are lower. On the suction side of the blade, the pressure drops well below any

measured in the previous cases. Careful inspection of the measured pressures
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Figure 7-16. Test Case 5. Blade surface normalized static pressure. '
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Figure 7-17. Test Case 5. Static pressure contours.




Figure 7-18. Test Case 5. Mach number contours.
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AACE II cascade, high transonic flowfield. »:
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on the suction side of the blade reveals three low pressure regions rather than

two. This may represent an error in the measured values.

The calculated blade surface pressures shown in Figure 7-19 agree quite
well with the measured values. Agreement on the pressure side of the blade is
nearly exact. Along the suction side the calculated values follow the measured
values, but are generally from zero to four percent above the measured
pressure values. At the center of the first low pressure region, the calculated

pressure is six precent higher than the experimental value.

At the blade leading edge the property gradients in Case 6 are slightly
higher than in the previous cases. This becomes evident when Figures 7-20
and 7-21 are compared with previous pressure contour and Mach number
contour plots. Apparently, these higher gradients increase the numerical
instabilities on the leading edge of the blade. The total pressure overshoot
and the low pressure spike, which are both shown near the upper left corner of

Figure 7-19, are evidence of this unstable tendency.

Increasing the density of the grid near the leading edge is one means of
increasing the stability of the solution in that region. However, in order to
maintain consistency with the other test cases, this idea was not used.
Another means of increasing the stability of the solution is to increase the
magnitude of the explicit smoothing coefficients described in Section VI.2.2.
Unfortunately, large increases in the smoothing coefficients can cause the

resolution of the property variations in the final solution to be smeared

excessively. A third means of increasing stability is to decrease the time step.
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Figure 7-20. Test Case 6. Static pressure contours.
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Figure 7-21. Test Case 6. Mach number contours.
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This effectively increases the implicit smoothing of the solution. For the
present case, stability is achieved by slightly increasing the smoothing
coefficients and by using a global time step limit instead of a local time step

limit. In addition, the calculated time step is multiplied by a factor of 0.65.

If this aigh transonic regime was characteristic of turbine blade row
flowfields, an extensive modification of the implemented smoothing technique
might be necessary. Specifically, property dependent coefficients could be used
to target instabilities at the leading edge. However, these coefficients would at
least double the computations required to smooth the flowfield. Therefore,
since this case is representative of the maximum Mach numbers found in

turbine blade rows, the present smoothing scheme is retained.

Figure 7-21 confirms that the Mach number at the exit boundary is
approximately 1.2. On the suction side of the blade, Mach numbers in excess
of 1.3 are computed. Unlike the previous cases, the entire flowfieid aft of the

choke point is supersonic.

VI1.1.7 TEST CASE 7

To demonstrate the capability of the MacCormack code to solve a different
cascade flowfield, a distinctly different cascade geometry was chosen. The
GMA 400 cascade, illustrated in Figure 7-3, was designed and tested by the
Allison Gas Turbine Division of the General Motors corporation 7. The
flowfield through this cascade was calculated at two pressure ratios. Case 7

involves a flowfield with subsonic Mach numbers similar to that of Case 5.
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The flow leaving a jet engine combustor is usually not swirling. Therefore,
the zero leading edge camber angle of the AACE Il cascade is representative of
the first blade row in a turbine. The GMA 400 cascade is representative of a
downstream blade row. The leading edge camber angle of this blade is 49.4
degrees. This allows the blades to operate efficiently in a flowfield which has a
circumferential velocity component which is approximately equal to or slightly
larger than the axial component. As Table 7.1 shows, the experimental data
were collected with inflow angles of 42.4 and 42.6 degrees for Case 7 and Case
8 respectively. This corresponds to approximately minus 7 degrees of
incidence. As Smith [7] notes, under these conditions viscous effects cause the
flow to separate on the pressure side of these blades. Since the present
investigation neglects viscous effects, some numerical errors should be expected

on the pressure side of the blade.

Measured and calculated blade surface static pressures are presented in
Figure 7-22. Agreement between the two sets of values are excellent over most
of the blade. On the pressure side of the blade, where viscous separation
occurs in the actual flow, the calculated pressure values are as much as three

percent below the measured pressure values.

Figures 7-23 and 7-24 illustrate static pressure and Mach number contours,
respectively, for the GMA 400 flow passage. As Figures 7-22, 7-23, and 7-24
show, the property gradients over the first 30 percent of the suction side of the
blade are very high. This appears to be the cause of the higher than expected
calculated pressure values on that portion of the blade surface. Figure 7-24

confirms that the entire flowfield is subsonic.
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Figure 7-23. Test Case 7. Static pressure contours.
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VII.1.8 TEST CASE 8

The GMA 400 cascade is considered again in Case 8. The GMA 400
experimental data with the pressure ratio across the blade row which comes
closest to matching the pressure ratio of the baseline case is chosen for
comparison. That pressure ratio corresponds to a theoretical average exit
Mach number of 0.95. For the GMA 400 cascade, this results in a maximum

Mach number on the flowfield of approximately 0.96.

Figures 7-25 to 7-27 illustrate the results obtained for Case 8. The
experimental and calculated blade surface pressure distribution comparison is
very similar to that of Casc 7. As shown in Figure 7-25, over most of the
blade the agreement between the two is excellent. However, on the pressure
side of the blade, where viscous separation occurs in the actual flow, the
calculated pressure values are, again, as much as three percent below the

measured pressure values.

As Figures 7-25, 7-26, and 7-27 show, the property gradients over the first
30 percent of the suctioh side of the blade are very high. As with Case 7,
these high gradients lower the accuracy of the numerical calculations. This
may be the cause of the higher than expected calculated pressure values on
that portion of the blade surface. Increasing the grid resolution near the
leading edge would improve the resolution. However, the number of grid

points was intentionally chosen to provide a reasonable comparison with the

grid used for the baseline case.
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VI1.2 EXPLICIT ARTIFICIAL DISSIPATION

Experience with the MacCormack code reveals that this combination of
methods is slightly unstable, especially at solid wall boundaries. Without
explicit damping, the instabilities cause the solution to diverge within a few
hundred time steps. The explicit artificial dissipation technique described in

Section V1.2.2 is used to control these numerical instabilities.

The impermeable wall boundary condition which is implemented at the
blade surface in the cascade flowfield creates the most serious instabilities.
Without any damping, instabilities cause very rough property value surfaces in
the leading edge region of the blade just prior to local divergence and program
termination. When damping is applied in the region at and around the
stagnation point, the same sequence of events occurs more slowly at other
points along the blade surface. On some grids, when damping is applied at all
grid points which are near the blade surface, the same process occurs slowly
near the intersection of the periodic boundary and the inflow boundary. For
the sake of robustness and computational efficiency, a small amount of

smoothing is applied over the entire grid to control these instabilities.

Too much smoothing will either smear the solution excessively, or will
itself, cause the solution to diverge. The second derivative terms used to
smooth the solution also modify the solution of the equations of motion. If the
modification is small compared to the Euler solution itself, the result will

reflect the fluid physics. If the solution modification caused by the smoothing

is not small compared to the Euler solution, high gradient regions of the

R W . 2,
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' flowfield will be smeared and small scale flow features will be lost. When the
effect of the smoothing dominates the FEuler solution, the result is

unpredictable. In some cases, the large smoothing effect can, itself cause the

- e o R W
- SRR

solution to diverge. Just enough smoothing to control numerical instabilities is

optimal. 4

Since the smoothing does not model any real phenomenon, the correct

Vo e e -

amount of smoothing can only be determined by experience. Therefore, when

a new cascade geometry is solved, or when new flow conditions are input, the 3

appropriate amount of smoothing is usually determined iteratively. i

On the baseline case, Case 1, smoothing coefficients were tested, which

were 50 percent larger than the iteratively optimized coefficients, to determine f
¢

the smearing effect of the smoothing scheme. Only very small changes were E

G detected in the final solution. Therefore, the smearing effects of the present

(J

smoothing scheme are acceptable. -
5

As described in Section VI.2.2, the smoothing coefficients are linearly !
decreased from an input maximum value, to an input minimum value. Since %
the smoothing terms do modify the flow solution, and the magnitude of these ‘
terms is decreasing, it can be expected that their changing magnitudes may :
affect the convergence tolerance check described in Section VI.2.3. Therefore, ‘:f

the amount of smoothing applied is decreased rapidly in order to reach the

constant minimum value quickly.
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‘ VII.3 TRAILING EDGE POINT

Several things complicate the flow solution at the blade trailing edge. ,
Complications caused by the combination of the blade shape and the inviscid
fluid assumption are discussed in this section. The Kutta condition
implementation is discussed in the trailing edge point unit process sections of :

Section IV and Appendix D. h

Unlike some compressor blades, turbine blades are not designed to have
sharp leading and trailing edges. If turbine blades were manufactured with ;
sharp leading and trailing edges, heat transfer from the very high temperature )

gases flowing past the blades would over heat these edges.

Unfortunately, rounded trailing edges complicate inviscid flow solutions in )

two ways. First, as Gostelow [19] discusses, the location on the trailing edge

G where the suction side and the pressure side flows meet is not obvious.
Second, real, viscous flows create boundary layers along the bladc surface and

a small stagnation region immediately behind the rounded trailing edge. A

wake is formed in the flowfield downstream of this aft stagnation point. These

features allow the gases to flow smoothly past the rounded trailing edge. This
is illustrated in Figure 7-28. Inviscid flow, on the other hand, tries to follow
the rounded trailing edge around to the point of application of the Kutta
condition. When the flow on each side of the blade reaches the point where
the Kutta condition is applied, it must abruptly turn, approximately 90

degrees. This situation is illustrated in Figure 7-29. This is not a realistic

I e e =

o

situation and is generally not possible numerically. p
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Figure 7-28. Viscous flow past a rounded trailing edge.
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Figure 7-29. Inviscid flow past a rounded trailing edge.
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VIL.1.7 TEST CASE 7

To demonstrate the capability of the MacCormack code to solve a different
cascade flowfield, a distinctly different cascade geometry was chosen. Tte
GMA 400 cascade, illustrated in Figure 7-3, was designed and tested by the
Allison Gas Turbine Division of the General Motors corporation {7.. The
flowfield through this cascade was calculated at two pressure ratios. Case 7

involves a flowfield with subsonic Mach numbers similar to that of Case 5.
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A variety of options for dealing with these problems are available. These

options are discussed next.

VIL3.1 TRAILING EDGE POINT LOCATION

Most numerical analyists simply choose a location for the application of the

Kutta condition. One of the following locations is commonly chosen.
1. The point where the blade camber line meets the rounded trailing edge.

2. The point where a straight line which is tangent to all the rounded
trailing edges in the cascade meets those rounded trailing edges.

Gostelow [19] points out that in reality, this location makes a significant
difference in the flow solution around the blade. However, in most numerical
solutions, the results at the trailing edge are not reliable. In the present
investigation, both of the options listed above were tested on the baseline case,
Case 1, and the results were compared. No significant differences were
detected. The first of the two options listed above was chosen to produce the

grids shown in Figures 7-1 to 7-3.

VIL.3.2 BLADE TRAILING EDGE GEOMETRY

The second trailing edge problem discussed above does present serious
difficulties to the numerical analyst investigating cascade flows. Three

possible solutions are listed below.
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1. Modify the shape of the blades being studied so that a sharp trailing
edge is produced. This can be accomplished in two manners. The aft
portion of the blade can be tapered to a point at the location along the
actual rounded trailing edge where the Kutta condition is to be applied.
The other technique is to extend the blade trailing edge. This extension
is tapered to a point. Property values calculated on the blade extension

are ignored.

2. Use relatively large grid point spacing near the trailing edge. This
effectively produces the same result as the first part of the previous

option.

3. Focus large amounts of smoothing near the trailing edge to damp the
instabilities associated with the abrupt turn which occurs at the point of

application of the Kutta condition.

Both parts of the first option have two major disadvantages. First, every
blade shape which is investigated must be modified. This procedure is both
time consuming and arbitrary. Any user of the cascade flow solver must be
trained to modify blade shapes prior to using the code. This detracts from the
user friendliness of the code. Because the final shape is somewhat arbitrary,
different analysts would modify the blades differently. Second, it is difficult to

know how the blade shape modifications effect the flow solution.

Two modified AACE II blade shapes were investigated in the present

investigation. One blade differed from the actual blade shape over the last ten

percent of the blade, the second blade differed from the AACE II blade shape
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over only three percent of the blade. Both modified blades produced results
very similar to the results gained with the actual AACE Il blade. However,
this option was discarded because of the requirement to determine new

geometries for each blade,

The second option listed above is an automated implementation of the
tapered blade shape solution just discussed. Any time a finite number of
discrete points are used to represent a curved surface, the shape is modified.
The more points that are used, the more accurate the representation. By
using relatively sparse grid points in the trailing edge region of a cascade
blade, a rounded trailing edge is represented by a point. In this case, analysts
need not be trained to modify blade shapes, and the magnitude and

arbitrariness of the modification are significantly reduced.

There are disadvantages to the second solution technique. Flow solver
truncation errors increase when the point spacing changes abruptly on a finite
difference grid. Therefore, by requiring relatively large grid point spacing near
the trailing edge, a large portion of the grid is constrained to use a fairly
coarse grid. If sufficient accuracy is available from grids of this density, this
constraint is not a problem. This solution is implemented in the present

investigation.

The third solution described above does not require blade shape
modifications and will permit a dense grid. As discussed in Appendix F, the
logical way to focus the appropriate amount of additional smoothing in the

trailing edge region is toc multiply the existing smoothing terms by property
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dependent coefficients. These coefficients can be more computationally
demanding than the smoothing terms themselves. The added computer time

and expense required to compute these coefficients may be prohibitive.
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SECTION VIII

CONCLUSIONS

response to the objectives proposed in Section I, the [following

conclusions are offered:

A robust Poisson-type elliptic grid generator has been developed to
generate C-type grids around two-dimensional cascade blades. This code
has been used to discretize cascade flowfields for this and other research
efforts. The quality of these grids is demonstrated by the high level of
accuracy of the flowfield solutions generated on them. The ability of the
code to generate C-type grids for cascade blade geometries described by
discrete (x,y) input locations, and the ability to handle various stagger
angles, blade turning angles, and solidities, all demonstrate the

generality of the grid generator.

An unsteady inviscid cascade flowfield solver has been developed. The
Kentzer method, using conservation variables, has been developed and
used to derive an appropriate set of equations to describe the physics at
each flowfield boundary. The MacCormack explicit finite difference

method is used to numerically integrate these equations at the

boundaries and the unsteady Euler equations in the interior of the
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flowfield. Unsteady solutions are computed directly with steady flow
solutions resulting as asymptotic solutions in time. The MacCormack
code has been used to efficiently produce cascade flowfield solutions.
Generality of the code has been demonstrated by calculating flowfield
solutions for two significantly different cascade geometries and by
calculating solutions over the full range of subsonic and transonic Mach
numbers typically found in turbines. Robustness has been ensured by

incorporating an efficient numerical smoothing scheme.

The accuracy of the MacCormack code has been confirmed by
demonstrating excellent agreement with experimentally measured blade
surface pressure measurements for both of the cascade geometries tested.
In addition, a numerical method of characteristics code has been
developed, as part of this research effort, to provide a relative standard
of accuracy for numerical cascade flowfield solutions. Like the
MacCormack code results, solutions generated by the characteristics code
were compared to the measured blade surface static pressures. These
comparisons prove to be very similar to those generated by the
MacCormack code with only very slight improvements in accuracy in
regions where the Mach number is close to unity and, on a coarse grid,
near the leading edge stagnation region. Static pressure and Mach

number contour plots of the flowfield solutions generated by the two

codes are also very similar.
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@ APPENDIX A

GOVERNING EQUATIONS AND COORDINATE
TRANSFORMATIONS

Appendix A describes the governing equations for the current investigation.
The conservation variable forms of the governing equations are provided with
subsequent expansion to primitive variables. In addition, the equations are

presented in matrix form and are transformed into strong conservation form.

A.1 GOVERNING EQUATIONS IN CONSERVATION VARIABLE FORM

As stated in Section III, the equations applicable to this research efort are
G the continuity equation, the vector momentum equation, the energy equation,
and the thermal and caloric equations of state. These equations are repeated

here.

(P + (oY) = 0 (A1)
(0V)+ V- ()VV)+ VP =0 (A.2)
(ve)+ V- [T(pe +P)] = 0 (A3)

P
T = —pﬁ- (A.4)
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1
a= [i]z (A.5)
p
These equations are based on the following assumptiouns:

1. continuum flow,
2. inviscid flow,
3. no body forces,
4. no heat conduction,
5. simple thermodynamic system, and

6. thermally and calorically perfect gas.

A.2 EXPANSION TO PRIMITIVE FORM

In the present investigation the governing partial differential equations of
motion are used in both primitive and conservation variable forms. This
section presents the expansion of the Euler equations, equations (A.1) to (A.3),

from conservation variable form, to primitive variable form.

A.2.1 CONTINUITY EQUATION. The conservation variable form of the
continuity equation, equation (A.1l), is expanded to primitive variables in the

following manner:

pe+V(Vo)+p(VV) =0 (A.6)
Dp T =
D +p(VV)=0 (A.7)
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@ A.2.2 VECTOR MOMENTUM EQUATION. The conservation variable form

of the vector momentum equation, equation (A.2), contains the divergence of
the fluid density times the dyad of the velocity vector, V'(/)W). This terun
represents the divergence of the convection of momentum. This term is better

understood when it is expanded in the following manner:
First, expand one of the velocity vectors, V=i +vj, to obtain:
V-(pVV) = V-(pVui + pVvj) (A.8)
Next, perform the indicated divergence operation:
V(pVV) = (puV), + (v V), (A-9)

Then, by expanding the remaining velocity vector into its components and

rearranging, the familiar convective momentum terms appear.

O T-(6VV) = [(pu2), + (puv)yfi + [(puv), + (pv2), (A-10)

Returning to vector notation, this term is expanded into primitive variable

form in the following manner:

V-(pVV) = V[V(sV)] + (V) VIV (A-11)
: V(pVV) = pV(V-V) + V[V-(V)] +[(oV) VIV (A-12)

Using equation (A.12), the conservation variable form of the vector
momentum equation, equation (A.2), is expanded to primitive variable form in

the following manner:

Voo + 0V, + o V(VV) +V[V(V0) + [(oV) VIV + VP =0 (A.13)
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) @ Combining appropriate terms into substantial derivatives and rearranging
yields:
DV
v2e DV e aTP =0 A4
o 2+ V() (A14)

Equation (A.14) can be simplified further. The first and third terms of
equation (A.14) combine to form the velocity times the continuity equation,
equation (A.7). Therefore, by substituting the continuity equation and dividing

by the density, equation (A.14) reduces to:

/)%—Y+\—/P =0 (A.15)

A.2.3 ENERGY EQUATION. Given the assumptions listed at the beginning

of this section, the total energy, pe, can be expressed in several different forms.

e First, in terms of internal energy and kinetic energy:
A
pe = pi +p—2~ (A.16)

Next, assuming a calorically perfect gas:

2

pe = pCvT+pVT (A.17)
{'- and, assuming a thermally perfect gas:
P v?
e = —— 4 p—— A.18
p ot {A.18)

These relationships will be used in the expansion of the energy equation,
equation (A.3), into primitive variables. First, expand all terms except the pe

product:
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(pe), + V-V(pe) + (pe)(V-V)+V-VP + P(VV) = 0 (A.19)

Substituting equation (A.18) into equation (A.19) yields:

P V32 P VE
- X Vyv|— ~
{*,—1 Ty t+ -1t
P \%
Tty (V-V)+V-VP+P(VV) =0 (A.20)

Combining terms into substantial derivatives where possible results in a

primitive variable form of the energy equation:

2
o Pl
1 o |Vt |Dp
7—1 Dt 2 |Dt Dt
2
+ (V) 4+ p - (V) +T-VP = 0 (A.21)

This form of the energy equation is used in Appendix C to demonstrate the
equivalence of the primitive variable and the conservation variable forms of

the compatibility equations.

Another common primitive variable form of the energy equation which
incorporates the assumptions applicable to this project is derived next.

Expand equation (A.3) in the following manner:
ep, + pe, +oV-Ve +eV-Vp 4 peV-V + PV-V +V-VP =0 (A.22)

Combining the appropriate terms into substantial derivatives where possible

and using the continuity equation, equation (A.7), to simplify equation (A.22)

yields:
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e p% +PVV4+V.VP =0 (A.23)

Using the momentum equation, equation (A.15), the pressure gradient term in

equation (A.23) can be exchanged for the following convective term:

- v D
Since V- D =
Dt

, equation (A.23) becomes:

V2

- D

N De 2

” = 4+PVV=p——— A.25
' e ¥ "Dt - (A.25)

Expanding the energy, e, into internal and kinetic energy:

Canceling equal and opposite terms and dividing by the density leaves:

D

" Di +PVV =0 (A.27) ‘

Using the definition of specific enthalpy, h = d+P/p:

Dh _ Di
= - A.28
Dt _ Dt | Dt Dt p Dt p? D (4.28)

D(P /p) _ Dd +_1_ DP P Dp
t

Solving equation (A.28) for the substantial derivative of internal energy, 4,

ST T § A e g a ot

provides a substitution for the first term in equation (A.27):
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Dh_1DP P Dp

P
—\VvV=o0 A.29
Dt p Dt p? Dt + p ( )

The primitive variable continuity equation, equation (A.7), reveals that the

last two terms in equation (A.29) sum to zero. Therefore,

For a thermally and calorically perfect gas:

C,T = g
=1 p

Therefore,

Dh __~ [1DP P Dp
Dt y—1|p Dt p* Dt

Using this equation to modify equation (A.30) yields:

= =0

p Dt p? Dt p Dt

A [LE_P Dp|_1 DP

y—1
Rearranging simplifies equation (A.32).

DP AP Dp

=0 A.33
Dt p Dt ( )

For a perfect gas, a2=7P/p. Therefore, the primitive variable energy

equation becomes:

BE 222 _g (A.34)

Dt Dt

Thus, for the assumptions listed above, this primitive variable form of the

energy equation is equivalent to equations (A.3) and (A.21). Equation (A.34) is
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the form of the energy equation used in the method of characteristics.

A.3 GOVERNING EQUATIONS IN SHORTHAND NOTATION

The conservation variable form of the governing equations can be

presented in the following short hand notation:

(o) =€ (A.35)
(pV), = M (A.36)
(pe), =€ (A.37)

where €, M and € contain the space derivatives appearing in the
continuity, vector momentum, and energy equations, respectively. Written in

vector notation, €, M ,and & are:

€ =—V(pV) ~ (A.38)
M =—V-(pVV)-VP (A.39)
€ = —V-[V(pe +P) (A.40)

A.4 GOVERNING EQUATIONS IN MATRIX FORM

The matrix form of the governing equations is:

Q. +E,+F, =0 (A.41)
where
p 2pu pv
+P
Q= f:' B= pupuv F= pv[;“-:P
pe (pe +P)u (/)e +P)v
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A.5 COORDINATE TRANSFORMATIONS

Coordinate transformations are often utilized in numerical computations to
improve solution accuracy. This requires two major steps: the transformation
of the grid covering vthe physical domain of interest to a uniform orthogonal
computational grid, and the transformation of the governing equations from
the physical domain to the computational domain. The grid transformation is
addressed in Section IV and in Appendix E. The transformation of the

governing equations is presented in this section.

Since neither the physical nor the computational grids is time dependent in
the present investigation, derivatives with respect to time are unaffected by
the transformation. Therefore, only space transformations are considered in
this section. The physical and transformed spaces are related through a one-
to-one correspondence. That is, each point in the physical domain, (x,y), is
related to exactly one point in the computational domain, (&,7), and vice

versa. Therefore, the computational space is described by:

€ = §(x,y)

n = n(x,y) (A.42)
or conversely

X = X{¢,7)

y =y(&m) (A.43)

Partial derivatives of the generic variable, { = f(x,y), are transformed using

the partial differentiation chain rule:
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The terms &, &y, Ny, and 7y are the transformation metrics. To calculate

these metrics, the generic function f in equation (A.44) is replaced by x and y,

respectively, to form the following identities:

X, =X Hxn =1

Yx = ¥e&x Yy =0

i)

Cramer’s rule provides a straightforward solution to this system of equations.

or, in matrix form:

Thus,

&=Jy, (A.47)

e =—Jy; (A.48)

where J is the Jacobian of the transformation. By definition J is given by the

following determinant:

[Ex ey}
3= |n 0 (A.49)

This determinant is equivalent to the reciprocal of the Jacobian of the inverse

transformation, I. In other words, J = I"!, where
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Xe X,
I=[ '} (A.50)
y( yu

The inverse Jacobian, I, naturally arises when Cramer’s rule is used to solve
equation (A.46). Physically, the Jacobian represents a stretching function
which relates a differential volume in physical space to that same volume in

the transformed space.

A procedure parallel to that presented above, using equation (A.45), yields
the remaining transformation metrics:

& =—Jx, (A.51)
ny =J x, (A.52)

Since the computational grid in the transformed space is orthogonal and
equally spaced, all the inverse metrics (i.e., x(, x,, ¥¢, andy,) can be
calculated numerically to a high order of accuracy. Careful thought should be
given to the method of calculation of the transformation metrics. This topic is

discussed further in Section A.6.

A.5.1 TRANSFORMED GOVERNING EQUATIONS. Transforming the space
derivatives in equation (A.41) as shown in equations (A.44) and (A.45) results

in the following system of equations in weak conservation form:
Qt + Efo + an,, + €yF£ + TIyF,’ =0 (A53)
Equation (A.53) can also be cast in strong conservation form. In the strong

conservation form, the transformation metrics in equation (A.53), which are

coefficients of the derivatives of E and F, are placed inside the differential
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operators. For example, consider the following partial derivative:

B (A.54)
Expanding this partial derivative by the chain rule yields:
(B, ] = E[I&} +E[1&]; (A.55)

The first term on the right-hand side of equation (A.55) is the same as the
second term in equation (A.53), after multiplication by the inverse Jacobian.

Solving equation (A.55) for this term yields:
E[1&] = [Ing]{’—E[ng]i (A.56)

Similar equalities can be formed for each of the terms in equation (A.53).
Making the appropriate substitutions and rearranging yields the following

result:

1Q): + (B, +FEy)le + [I(Eny, +Fuy)],

—E [(IEx){ + (Inx)u] —F [(IEy)ﬁ + (Iny)l}] =0 (A‘57)

Substituting equations (A.47), (A.48), (A.51), and (A.52) into the last two
bracketed terms of equation (A.57) shows that each of these terms is exactly

zero. Therefore, equation (A.57) reduces to:
[IQ]t + II(EEX + ng)]f + lI(Enx +F77y)]:/ =0 (A‘58)

This form of the governing equations, known as the strong conservation-law

form, was first developed by Vinokur (9] and Viviand [10].
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A.5.2 CONTRAVARIANT VELOCITIES. Equation (A.58) contains several

groupings of velocity products of the following form:

U= {u+§yv (A.59)

V = nu+yv (A.60)

These groupings are called contravariant velocities. Contravariant velocities
represent components of the transformed velocity in the directions of the
computational coordinates. For example, U represents the velocity component
in the £ direction. This becomes obvious in a Lagrangian frame when, for
example, U is calculated by taking the total derivatives of { with respect to

time. Thus,

d d d
U=E%=gxd—’:+gy—d{- (A.61)

where, by definition, —:%:-=u and Q&=v’ are the Cartesian velocity

dt

components. Substituting these contravariant velocities into the transformed
governing equations improves computational efficiency. Thus, the strong
conservation-law governing equations, with the contravariant velocities

incorporated, are:

Q +E +F, =0 (A.62)
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0 o 1(pV) 1(pV) y

_ pu _ I{puU + £,P) _ I(puV +n,P)
Q=114 E= |iovu+¢p) F= {ipvv +n,P) .
pe I|(pe +P)U] 1](pe +P)V]

In this research program, equation (A.62) is solved using the MacCormack

explicit finite difference method (3] to calculate properties at all points in the

interior of the flowfield. The Kentzer method [2] yields similar sets of

equations applicable at the various boundary points.

A.6 CALCULATION OF TRANSFORMATION METRICS :

Caution should be exercised when calculating the transformation metrics.

Thompson et al. [8] explain that the highest level of accuracy is obtained when

the metrics are differenced numerically in exactly the same manner as the

G dependent variables in the governing equations. For example, if a partial

derivative in the governing equations is approximated by a central difference,

£ g ar ey

then any metric used in conjunction with that derivative should also be
approximated by a central difference using exactly the same grid points. This
statement applies for equations cast in primitive variables as well as in
conservation variables. As described in Section IV, the MacCormack method :
calculates all derivatives using one-sided differences. Therefore, the same J

one-sided differences must be used to calculate the metrics.

To understand this precaution more throughly, consider the two terms in
equation (A.57) which were determined to be exactly zero and were therefore,

discarded. For illustrative purposes, consider the first of these terms:
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E [(I&)e +(Iny),) (A.83)

The metrics in this term were calculated using equations (A.47) and (A.48 .

Substituting these metric identities into equation (A.63) yields:

E [(I‘Iyu)( +(I(_J)y{)u] (A'64)

which can be written as:

E [(v,)e—(yol (A.65)

The MacCormack method differentiates the y, and y, metrics using forward
one-sided differences for the predictor and backward one-sided differences for

the corrector. Considering the predictor:

[y'l;* W y'li.j]- [yﬁi.jﬂ - y(i,j ” (A’66)

where Af = An = 1.0. First, consider the case where the predictor metrics

E

have also been calculated using forward one-sided differences. For
example, y¢ =¥, ;—Yij and ¥y, =V¥ij+1—Yij, ete Inserting these

approximations into equation (A.66) yields:

E [ {Yi+1,j+1—}’i+1,j]‘ [Yi,j+1"}’i,jH
[{yi+1,j+1"3'i,j+1}— {Yi+1,j")'i,j ]” (A.87)

Obviously, this term is exactly zero. The same result is obtained when

backward differences are used consistently.
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@ Next, consider a technique which does not use a consistent approximation
for metric derivatives. For this test case, use centered differences to
approximate the inverse metrics. For example, y¢ = [y ;;—¥i_;|/2 and

¥y = [¥ij+1—Yij~1]/2, etc. Inserting these approximations into equation

{Yi+1.j+1 —Yi+1,)-1 ] - ‘[Yi,j+1 —VYij—- ]'
[ {Yi+l,j+l —Yi—1,j41 ] - {Yi-n,j —Yi-1)j J] (A.68)

\

(A.66) yields:

E
2

In general, this term does not equal zero! Therefore, by not using consistent
approximations, the terms which were discarded because they are equal to
zero analytically, are in fact, not equal to zero numerically. In other words,
G an undesirable source term is added to the transformed equations when the
derivative approximations used to calculate inverse metrics are different from
the approximations used to calculate property derivatives. The net effect after
both predictor and corrector steps is proportional to the difference between
current time level properties and the predicted new time level properties (i.e.,
E"“—Em). If this difference is exactly zero, the source term will also be
zero. However, this is seldom the case. Even if exact calculations are used to
calculate inverse metrics, the numerical approximation of the second
derivative, which is calculated using the MacCormack method, is not exact

and will still create an error.
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0 In order to avoid the undesirable source terms described above, the
approximation used to calculate the inverse metrics must be the same
approximation used to calculate flow property derivatives. In the case of the
MacCormack method, different approximations are used at the predictor and
corrector steps. Therefore, two sets of metrics must be used. One set must be
calculated using first-order forward diflerences and the other set must be

calculated using fiist-order backward differences.

Close examination reveals another interesting point. Only one set of

Jacobian values is required. The inverse metrics discussed above are

~ multiplied by the local Jacobian to calculate the metrics. Then, in the
transformation to the strong conservation form, all terms are divided by the

local Jacobian. Therefore, in every term containing one metric (all first-order

G space derivatives), the eflect of the Jacobian is eliminated. However, the
Jacobian in the time derivatives in the strong conservation form is not

cancelled out and is not affected by the consistency considerations described

above. Therefore, the most accurate approximation for the Jacobian should

be used.
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APPENDIX B

METHOD OF CHARACTERISTICS

Characteristic theory identifies the physical paths of propagation of

information through a flowfield, which are the pathline and the wave surfaces.

The numerical method of characteristics uses characteristic theory to

numerically integrate the governing differential equations of motion. This N

appendix describes the results of characteristic theory for the Euler equations

and outlines the numerical method of characteristics appr-:ach chosen as a

method of verification of the MacCormack code in the present investigation.

B.1 CHARACTERISTIC THEORY

Detailed developments of the method of characteristics have been

published by Rusanov [11], Zucrow and Hoffman [12], Hoffman [13], and Wang

[25]. This section summarizes the development as presented by Wang.

The governing equations for the present investigation are discussed in

Appendix A. These equations form a set of hyperbolic partial differential

equations of the first-order. In primitive variable form they are:

p+V-Vp+pVV =0 (B.1)

p%¥+VP=0 (B.2) 3

i
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N
»
A ]
DP 2 D[) .
— —a* — =0 B.3 "
@ Dt Dt (B.3) N
i
3
The method of characteristics forms linear combinations of this set of ﬁ
. . . s . X
equations yielding an equivalent set of compatibility equations. A ::
compatibility equation is an interior operator which has one less independent .;
.(
variable, contains derivatives only in the corresponding characteristic surface, ':
\
Y.
and is valid only in that surface. A characteristic surface is a surface in the _:
solution space on which the governing partial differential equations may be ‘
\]
combined linearly to form a compatibility equation. ,:{‘
i
For unsteady two-dimensional flow there are three independent variables: .
(x,y,t). Therefore, the characteristic surfaces are surfaces in three-dimensional ::
It
- . et
space. There are two families of characteristic surfaces: stream surfaces and ’oﬁ
™
f: wave surfaces. There are two types of characteristic curves corresponding to '
the two families of characteristic surfaces: pathlines and wavelines. The k
Y
pathline is the intersection of all the stream surfaces containing the given )
point in space which is under consideration. The waveline is the line of
¢
contact between a wave surface and the Mach conoid. The Mach conoid is
6
the envelope of all wave surfaces which contain the given point in space which
is under consideration. Two stream surfaces and the corresponding pathline ;_»
are illustrated in Figure B-1. A Mach conoid, a wave surface, and the )
)
1\
corresponding waveline are illustrated in Figure B-2. 3
There are two types of compatibility equations corresponding to the two !
types of characteristi- surfaces: the pathline equation and the waveline 0
equation. Compatibility equations contain directional derivatives only along a
‘Al
by,
‘AU
4

>
TS R IS I S ) N T L N -’f
e e Y St et a o



e S Tm R

e
-

Ty -
Pl

o e

o ar

ey

B

ST e E A

- .
™

-

»P
- -

-

Vo

s
-

TwTe e b

i

PRI LT R RN RO AN XA RA RN I N U XARNY AN o ' Sa Y ™ " i e B Y 3" Ty >y » ry 5030289, 8%

147

Ay

STREAM SURFACES

PATHLINE

Figure B-1. Stream surfaces and corresponding pathline.
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’: Figure B-2. Mach conoid, wave surface and corresponding waveline.
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characteristic curve and in the corresponding surface. The directional

derivative along a characteristic curve is given by:

%ﬁl[ = () +W-¥() (B.9) ]

where W is the relative velocity vector along the curve.

Since the relative velocity along a pathline is the fluid velocity, the

directional derivative along the pathline is:

40

L = 2L () +9-9() (B

Dt

Rl

pathline

which is the substantial derivative. The energy equation in primitive variable

form, equation (B.3), is a valid compatibility equation as it contains directional

derivatives only along the pathline. Therefore, the primitive variable form of

the pathline equation is:

DP
= _ =0 B.6

The relative velocity along a waveline is:

—

W =V-as (B.7)

where @ is the unit vector normal to the corresponding wave hypersurface.

Thus, the directional derivative along a waveline is:

f' Ol 20w
! " Ll =g() = OtV =ad)¥() (B.8)

The primitive variable governing equations, equations (B.1), (B.2), and (B.3),

can be combined in the following manner to obtain a valid waveline equation:
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primitive [ primitive ] primitive
o | variable R variable variable B
continuity —pan momentum + energy =0 (B.9)
equation equation equation

Inserting equations (B.1) to (B.3) into equation (B.9) and rearranging to form
directional derivatives along the wavelines where possible, forms the following

waveline compatibility equation:

% —paﬁ'%;:— +pa’ [V-V—ﬁ-(ﬁ-V)V] =0 (B.10)

The term in brackets contains derivatives in the corresponding wave surface

which are called cross derivatives.

The pathline equation, equation (B.6), is valid on the pathline. The
waveline equation, equation (B.10), is valid on the wave surface corresponding
to the wave surface unit normal vector, i. There are an infinite number of
choices for the wave surface unit normal vector fi corresponding to the infinite
number of wave surfaces at a point. However, only four compatibility
equations can be included as a set of independent equations for unsteady two-
dimensional flow. The pathline equation is included since it is the only
compatibility equation which contains a derivative of density. Consequently,

exactly three waveline equations are used.

B.2 THE NUMERICAL METHOD OF CHARACTERISTICS

Because the numerical method of characteristics is founded on
characteristic theory, it very closely models the fluid physics of the flowfield

being studied, and therefore, is very accurate. Unfortunately, it is also
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complicated and computationally demanding. Marcum and Hoffman (26 have
developed a numerical method of characteristics analysis which is second-order
accurate in time and space and is very efficient relative to other numerical
method of characteristics analyses. In a manner similar to the implementation
of Marcum and Hoffman, the present investigation employs the numerical

method of characteristics to solve unsteady two-dimensional cascade flowfields.

In the numerical method of characteristics the computational coordinates
are the characteristic surfaces described in Section B.1. Therefore, numerical
method of characteristics analyses integrate the compatibility equations along
the corresponding characteristic lines. In direct marching numerical method of
characteristics analyses this is accomplished by constructing the network of
characteristic lines, which make up the computational grid, as the flowfield
solution is computed. This process is very computationally demanding in

flowfields involving more than two independent variables.

The inverse marching numerical method of characteristics uses a fixed grid
to prespecify solution point locations at the forward time level and projects a
local network of characteristic lines from those solution points back to the
current time level solution surface. Interpolation is used to determine property
values at the points where the characteristic lines intersect the current time
level solution surface. This inverse marching technique is much more efficient
than the direct marching technique for flowfields involving three or more
independent variables such as the unsteady two-dimensional cascade flowfield

being studied in the present investigation.
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B.2.1 APPROACH. In the present investigation an inverse marching
numerical method of characteristics scheme is employed. The solution points
are the grid points of the AACE II cascade grids which are also used by the
MacCormack code. These grids are illustrated in Figures 7-1, and 7-2, and

their development is discussed in Section V.

Successive solution surfaces are separated by time steps which are
restricted by the CFL [24] stability criterion. The CFL criterion requires the
physical domain of dependence be contained within the numerical domain of
dependence. Figure B-3 illustrates the numerical domain of dependence, or
convex hull, for the inverse marching numerical method of characteristics. As
described in Section VI.2.1 for the MacCormack code, local or global time

steps can be used in the characteristics code.

The second-order accurate modified-Euler predictor-corrector numerical
integration method is used to integrate the compatibility equations. For the
predictor step of the modified-Euler method, the derivatives along the
characteristic lines are replaced by one-sided forward-difference
approximations. Cross derivatives and coefficients are evaluated at the
current time level. For the corrector step, the derivatives along the
characteristic lines are réplaced by finite difference approximations centered
along the characteristic lines. Coefficients are evaluated as averages between
their values at the current time level and their predicted values at the forward
time level. In order to maintain second-order accuracy, without violating the

physical domain of dependence, evaluation of the cross derivative terms at the

forward time level is avoided in the manner developed by Butler [27].
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Figure B-3. Convex hull for the numerical method of characteristics.
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Butler devised a scheme that explicitly eliminates the need to evaluate
cross derivatives at the forward time level. Butler replaced the set of three
independent waveline equations by a set of four waveline equations and a
noncharacteristic linear combination of the continuity equation and the energy

equation. The noncharacteristic relation is:

—1;% +pa?AV =0 (B.11)

By forming three linear combinations of the finite difference forms of these
five equations, the cross derivative terms at the forward time solution point
are eliminated. These three equations, along with the pathline equation,
comprise a set of four independent finite difference equations for determining
the four primitive variable solution properties, p, P, u, and v, at the forward
time level solution point. Figure B-4 illustrates the pathline and four
wavelines between two solution surfaces. An indexing system for the lucal
characteristic network is also presented in Figure B-4. In that system, the
points where the wavelines intersect the current time level solution surface are
numbered 1, 2, 3, and 4, the point where the pathline intersects the current
time level solution surface is numbered 5, and the solution point at the

forward time level solution surface is numbered 6.

B.2.2 INTERPOLATION. Interpolation is used to determine property values
at the points where the the characteristic lines intersect the current time level
surface, points 1 to 5. Since the physical grid is nonorthogonal and nonequally

spaced, second-order accurate interpolation of each of the solution properties,
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Figure B-4. Pathline, four wavelines, and two solution surfaces.
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at every solution point, at every time level can be very computationally

demanding. However, efficiency is greatly improved by transforming the grid
to an equally spaced orthogonal grid and interpolating in transformed space.
Grid transformation is discussed in Appendix E, and the transformation of
partial differential equations from physical to computational space is discussed

in Appendix A.

Flow property values in the current time level solution surface are
determined by least squares quadratic bivariate curve fits in transformed space
of the data at the unine initial-value grid points which lie within the convex
hull illustrated in Figure B-3. The quadratic bivariate interpolating

polynomial for the flow properties in transformed interpolating space is:
f=ag+2, A6 +a,An + a;A8 Ay + a, AE2 + ag Arf? (B.12)

where f is any of the four solution property values, p, P, u, or v, and A¢ and
An are the transformed distances from points 1, 2, 3, 4, or 5 to the central

point of the interpolating square. Specifically:
Al =& Ax + § Ay (B.13)

and

An = n, Ax + ny Ay (B.14)

where Ax and Ay are the distances in physical space from points 1, 2, 3, 4, or

5 to the central point of the interpolating square. The values of Ax and Ay

are obtained from the finite difference forms of the pathline equation:
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@ Axg = —ugg At (B.15)
or of the waveline equation:
Axpy, = —(u—an;)gy At (B.17)

Ayp = —(v—an;)g, At (B.18)

)

where the subscript m represents any of the waveline base points, points 1, 2,
3, or 4, and the double subscripts indicate average values along the
appropriate characteristic line. For the predictor step these average coefficient

4 values are replaced by the corresponding values at the current time level.

The coefficients a, to ag in equation (B.12) are determined through a least

‘. squares procedure applied in transformed space. In matrix form:
Aa=b (B.19)

where a is the six component vector of coefficients a; to ag, b is the six
component vector of terms which consist of summations over the nine grid
points in the interpolating square of products of f, A, and A7, and A is the
six by six matrix of coefficients involving summation of products of A¢ and
An. In the b vector and the A matrix, A and Az are the distances in
transformed space from the central point to each of the points in the
interpolating square. Since Af = An = 1.0 over the entire grid, the A matrix
is the same for every interpolating square. This unique A matrix also has a

unique inverse. Therefore, A™! is multiplied times the b vector to solve for the

a vector explicitly at every grid point at every time step.
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transformation metrics at the nine points on the same transformed
interpolating square used for flow property interpolations. The bivariate
interpolating polynomial is again equation (B.12) where f is one of the four
transformation metrics, &, Ey, g, or 7j,. Because the grid is fixed, the
coefficients for the transformation metrics interpolating polynomials, a; to ag,

are calculated once, before the first time step, and used at every time step.

B.2.3 UNIT PROCESSES. In many ways the unit processes developed for this
characteristics code are similar to the MacCormack code unit processes
presented in Section IV. For example, all the same types of boundary points
must be considered and the boundary conditions implemented are the same.
On the other hand, some considerations differ from those of the MacCormack
code. For example, primitive variables are used instead of conservation
variables, each solution point is predicted and corrected prior to moving to the
next solution point, and the numerical method of characteristics is employed,

rather than the MacCormack method.
Each of the following types of flowfield points must be considered:
1. interior points,
2. solid wall boundary points,
3. trailing edge point,
4. subsonic inlet boundary points,

5. subsonic exit boundary points, and
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6. supersonic exit boundary points.

All periodic boundary points and grid cut points lie in one of the regions
listed above. Therefore, no additional sets of equations are required to
compute these points. However, because of their location on the

computational grid, they do require special handling of indices.

All unit processes have several features in common. At every solution

point the following sequence is followed:
1. For the predictor:

a. Interpolating polynomial coefficients are determined for the four

solution properties, p, P, u, and v.

b. The physical locations of any of the five base points, points 1 to 3,
required for the unit process under consideration, are calculated

using the characteristic equations, equations (B.15) to (B.18).

c. The transformed space locations of any of the five base points,
points 1 to 5, required for the unit process under consideration, are

calculated using equations (B.13) and (B.14).

d. Using the appropriate interpolating polynomial coefficients, ag to
ag, in conjunction with the interpolating polynomial, equation
(B.12), each of the solution properties, p, P, u, and v, are
determined at any of the five base points, points 1 to 5, required

for the unit process under consideration.

e. Using the appropriate interpolating polynomial coefficients, a, to
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as, in conjunction with equations (B.12), (B.22), and (B.23), the
transformation metrics, &, &, 7y, and Ty, and the cross derivative

terms, u,, Uy, Vi, and vy, are determined at any of the four

y’
waveline base points, points 1 to 4, required for the unit process

under consideration.

Using the equations presented below for the type of point being

considered, the four solution properties are predicted.

2. For the corrector many of the same steps are executed. However, in

order

to achieve second-order accuracy, the values of coefficients

appearing in the equations are averaged between the values at the base

points, points 1 to 5, and the predicted values at the solution point,

point 6. For the corrector step:

a.

T '.\,\V'J' e 'J_'.-‘ AN

The physical locations of any of the five base points, points 1 to 5,
required for the uni{ process under consideration, are recalculated

using the characteristic equations, equations (B.15) to (B.18).

The transformed space locations of any of the five base points,
points 1 to 5, required for the unit process under consideration, are

recalculated using equations (B.13) and (B.14).

Using the appropriate interpolating polynor izl coefficients, ag to
ag, in conjunction with the interpolating polynomial, equation
(B.12), each of the solution properties. ;. P, u, and v, are
determined at any of the five base points, points I to 5. required

for the unit process under consideration.
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Using the appropriate interpolating polynomial coefficients, a, to

ag, in conjunction with equations (B.12), (B.22), and (B.23), the

transformation metrics, &, {y» My, and Mys and the cross derivative

and v, are determined at any of the four

vx’ y?

terms, uy, uy,

waveline base points, points 1 to 4, required for the unit process

under consideration.

Using the equations presented below for the type of point being

considered, the four solution properties are corrected.

B.2.3.1 INTERIOR POINT UNIT PROCESS. At interior points the pathline

-:‘, H

equation, equation (B.6), is solved to determine the density at the solution

point, point 6. The finite difference form of the pathline equation is:

‘:: Pg = P5+_12— [Ps-Ps] (B.25)

asp

- e S N
e Yo

e ke o

where the double subscripts indicate average values along the appropriate

Y e i e

characteristic line, which in this case is the pathline.

The remaining solution properties, P, u, and v, are determined using the

LA

L & X O 9 5 7 =,

method developed by Butler [27]. Butler used four waveline equations,

equation (B.10), and the noncharacteristic relation, equation (B.11), to produce

three independent equations. The particular linear combination used by

AT S S o

Butler eliminates the terms involving cross derivatives at the forward time

level. The unit vectors associated with the four waveline equations can not be

Specifically, these unit vectors must be chosen in

arbitrarily specified.

orthogonal pairs where n; = ~1fi;, 1y = —1fiy and fi; X fi, =t.

B

by A " 5% . AT A N I S N R S IR IR VL P R R .
"‘l‘.a W\ -Q‘ AN '.ﬁ'-."".\ \ "'\ """ Lol f""’ ," f‘} f ¢

RN RIU - 4 A\J p
'n‘ N ;-5.‘\‘ ‘l'h\ ot ,I.\ BN J"»‘ AN ‘\ 1




O A R TN T WU VU SR WO W AR T ey

i‘\l"'l_.l‘ll"’ v Sa% 00 8a% 02 2% 627 89" 82% % Do Pab ot Q¥ Ma¢

The finite diflerence form of the noncharacteristic relation is:

A
P5 + '_21 (/) 32)6 {ux +Vy]6 = C5 (B26)

e

7/

t
Cy =P — > (pa)s [u,(+vy L

The four waveline equations in finite difference form are:

Pg—(pa)e (nyjug +ny;ve)

’_ At

s - [pazl(nfi_l)ux+(n12j—l)vy+nlin1j(uy+vx)) .= C, (B.27)
of ‘

where

C, =P, ~(pa)s (nju; +nyv,)

At |
+5 (Pa’lleb— D uc+ (f = 1) vy + nyny oy + )] |

o

.
'y P

-

Pg—(pa)es (ngiug +np;ve) 3

- -
- -

v-‘

4

At
- ~2'— [/’3‘2[(n22i —l)ux+(n22j'_l)vy+n2in2j (uy+vx)] C2 (B'28)

s =

CL ]

where

" e e
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-

-

-
o

Cy = Py —(pa)gy (ngiuy +ngjvy)

ot

o

o

T

At
X +5 {p a®|(ng; — 1) u, +(ng; — 1) v, + nging; (uy +v,)]
&
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Pg —(pa)ss (ngiug +nz;ve)

At
- _2_ P azl(n32i - 1) Uy + (ngj - l) vy + n3ins_i (uy +vx)] 6 = C3

C3 = P3—(pa)es (ngyuz +ns;vs)

At
+ _2_ paz[(n;fi - 1) u, + (n32_| - 1) Vy + N3i0g; (uy +Vx)] 3

Pg—(pa)ss (ngjug +n45ve)

At
.!‘ﬁ - T p azl(nzl - 1) ux + (n42j - 1) vy + n4in4j (uy + Vx)] ]6 = C4 (B.30) S

P, —(pa)eq (ngus +n4vy)

At
+ 'E_ pa2[(n42i - 1) uy + (n42j - 1)vy +n4in4j (uy +VX)] 4

g e

-

The noncharacteristic relation and the four waveline equations are

W P e

combined to form three independent equations in the following manner.

3 ‘ '7< Q.‘.“';Y

Subtracting equation (B.27) from equation (B.29) yields:

-

Ll e A

et
e o 2 <P B

[(Pa)es +(pa)e ] (njug+1n;v) = C3—C,

.~

»

Similarly, subtracting equation (B.28) from equation (B.30) yields:

[(/’3)64 +(pa)gs ] (ngug +nyvg) = C4—C, (B.32) ]
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The third equation is derived by subtracting the noncharacteristic relation

from the sum of the four waveline equations divided by two:

[(/’3)63 —{ra)s ](nliUG +1n;ve) + [(/’3)64 —(pa)g ] (najug + ngjve)

1
Pg+—
87 9

(C1+C2+C3+C4)_"C5 (B.33)

o |~

At interior points equations (B.31) to (B.33) can be simplified by chosing fi, = i

and fi, = j. This forces fi; = —i and fi; = —j. Using these unit vectors and

rearranging equations (B.31) to (B.33) yields:

- | [ca-c]
[(pa)ss‘*'(/’a)mJ

¢ Vo= o= (B.35)

‘[(93)64 + (03)62]

] ,
Pg= 2 [“6 [(/’3)61 - (Pa)ss] +vs [(Pa)sz —(pa)es ] +C+Cy+C3+Cy ]_ Cs

(B.36)

Equations (B.25) and (B.34) to (B.36) are solved to advance the solution in

time at all interior points. For the predictor step of the calculations, the

averaged coefficient values designated by double subscripts are replaced by the

corresponding values at the current time level solution surface.
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‘ B.2.3.2 BLADE SURFACE BOUNDARY POINT UNIT PROCESS. In a two- 3
dimensional cascade flow, the surface of the blade forms the only solid wall
boundary. The boundary condition applicable at a free slip boundary point is ;

that the velocity normal to the boundary is zero.
ﬁl.vﬁ =0 (B'37)

where 1, is the unit vector normal to the blade surface and pointing into the

PR A gy

blade at the solution point under consideration.

Since the 1, unit vector lies outside the flowfield, the waveline equation
corresponding to the fi; unit vector is replaced by the boundary condition,
equation (B.37). Since one of the four waveline equations used at interior
points is not available, Butler’s technique must be applied in a different y

6 manner at blade surface boundary points.

Expanding equation (B.37) to scalar form and solving for the v velocity

component at the solution point yields: )
n .
Vg = [-—2—J ]uﬁ (B.38)

where the unit vector fi, is tangent to the blade surface at the solution point.

Subtracting the fi, waveline equation, equation (B.27), from the fi; waveline

equation, equation (B.29), using equation (B.38) to eliminate the v velocity

ta ™

component from the result, and rearranging yields:
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Dy [C4 - Cz]

R"a)s«i + (/’a)szJ

(B.39)

u6=

Subtracting the noncharacteristic relation from the sum of the fi; waveline
equation plus the i, and i, waveline equations added and divided by two, and

implementing the boundary condition yields:

1
Pg= Py {(n?.i ug -+ Ny; V) [(/’a)ez - (/’a)64]+ Cy+Cy }'*‘ C;—Cs;  (B.40)

The chosen boundary condition reveals that the pathline lies on the blade
surface. Thus the pathline equation, equation (B.6), is still applicable and is
repeated here in finite difference form;

po = ps+—5 [PS—PS} (B.41)
agg

Equations (B.38) to (B.41) are solved to advance the solution in time at all
solid wall boundary points. For the predictor step of the calculations, the
averaged coeflicient values designated by double subscripts are replaced by the

corresponding values at the current time level solution surface.

B.2.3.3 TRAILING EDGE POINT UNIT PROCESS. In the inviscid cascade
flowfield, the Kutta condition is enforced at the trailing edge of the cascade
blade. Specifically, the flows leaving the two sides of the blade surface at the
trailing edge are forced to flow parallel to each other in a direction such that

the static pressure is equal on the two sides of the trailing edge point.
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In the present investigation, the requirements listed above are enforced by
installing a small imaginary solid wall segment which is hinged at the trailing
edge point. By forcing the flow on both sides of the wall segment to follow the
wall, the flows on the two sides of the trailing edge are forced to be parallel to
each other. The flow on each side of the hinged wall segment is solved
independently, in the same manner as described in Section B.2.3.2 for the solid
blade surface point. Therefore, as at the solid wall points, equations (B.38) to

(B.41) are solved to determine the forward time level property values.

After solving for the flow properties on each side of the hinged wall
segment independently, the pressure difference between the two sides is
compared. If the difference is not equal to zero, to within a specified
tolerance, a zero finding secant method is used to correct the wall orientation
(flow angle) toward the angle where the pressures are equal. This procedure is
iterated until the pressure difference between the pressure and suction sides of

the blade, at the trailing edge, is approximately zero.

Because the imaginary hinged wall segment is not stationary, but instead is
allowed to pivot, the local coordinate systems, set up on each side of the wall
at the trailing edge points, also pivot. During the solution process at the
trailing edge point, the local coordinate system unit vectors, i}, fiy, fiz, and fi,,
are defined with respect to their orientation at the forward time level, that is,
the time level of the predicted and corrected properties. In other words, at
each iteration, i; and fi; are aligned perpendicular to, and A, and fi, are
aligned parallel to the hinged wall segment at the angle the wall is assumed to

be at, at the forward time level, during that iteration.
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B.2.3.4 EXIT BOUNDARY POINT UNIT PROCESSES. Because the
component of the flow velocity which crosses the exit boundary can be either
subsonic or supersonic, each exit boundary point must be checked, at each
time step, to determine which unit process is appropriate. At the exit
boundary, the unit vector fi; is placed perpendicular to the boundary, pointing
outward. Therefore, the quantity ﬁl'v is calculated and compared to the local
speed of sound, a, to determine whether the boundary point should be handled

as a supersonic or a subsonic exit boundary point.

When the component of the fluid velocity perpendicular to the exit
boundary is greater than or equal to the local speed of sound, the exit flow is
only dependent upon upstream conditions. From a characteristic perspective,
this means that the base of the Mach cone (domain of dependence) lies
entirely within the computational domain. In this case the interior point unit

process is appropriate and is applied as described in Section B.2.3.1.

When the component of the fluid velocity perpendicular to the exit
boundary is less than the local speed of sound, the fluid properties at that
boundary are dependent upon both upstream and downstream phenomena.
Therefore, at least one boundary condition must be applied at the boundary

point. The subsonic exit point unit process is described next.

In the characteristics analysis developed for the present investigation, one
boundary condition is applied at a subsonic exit boundary point. The chosen

boundary condition is that the exit static pressure is known:

P =P, (B.42)
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The waveline equation corresponding to the fi; unit normal vector is
outside the flowfield, and is replaced by the boundary condition, equation
(B.42). Therefore, the equations used in conjunction with the Butler method
to determine the applicable equations at a subsonic exit boundary are the
boundary condition, equation (B.42), the finite difference form of the
noncharacteristic relation, equation (B.26) and the three remaining waveline
equations corresponding to the unit normal vectors n,, iz, and 1, in finite

difference form, equations (B.28) to (B.30).

The finite difference form of the pathline equation, equation (B.25), is used
to solve for the density at the subsonic exit boundary points. That equation is

repeated here for convenience:

. .
Pe = Ps+—5 [Ps —Ps] (B.43)
256

Subtracting the fi, waveline equation, equation (B.28) from the i, waveline

equation, equation (B.30), yields:

(nas v+ nayve) | (r2)ea+ (0)ea | = [ €4 = (B.44)

Subtracting the noncharacteristic relation from the sum of the n; waveline
equation plus the i, and i, waveline equations added and divided by two

yields:

1
Pg+(pa)gs(n);ug +ny5ve) + Py (ng; ug +ny; V) [(/’a)M - (Pa)sz]

=_;’(C2+C4)+C3_Cs (B.45)
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Solving equations (B.44) and (B.45) simultaneously for the two components

of velocity and implementing the boundary condition produces:

C4 -~ Cz
—Dou
(ra)eq +(pa)sy 2ue

n2j
. [_2 C,~Cy
5 =
Dy (Pa)64 + (Pa)sz

(pa)es — (p2)ge
(ra)eq + (12 )e2

+ 0y [ 1 l
(re3) |2

At a subsonic exit point, the boundary condition defines the exit pressure

at the solution point, the pathline equation in finite difference form, equation

(B.43), is solved for the density, and equations (B.46) and (B.47) are solved for

the velocity components to advance the solution in time. For the predictor

step of the calculations, the averaged coefficient values designated by double

subscripts are replaced by the corresponding values at the current time level

solution surface.

B.2.3.5 SUBSONIC INFLOW BOUNDARY POINT UNIT PROCESS. As in
the MacCormack code, the stagnation pressure, P, the stagnation
temperature, Ty, and the flow angle, 8, are specified as boundary conditions at
the inflow boundary. Of the compatibility equations, only the waveline
corresponding to the fi, unit vector, equation (B.27), is solved at the inflow
boundary. The fi; unit vector is chosen to be the x-direction unit vector, i.

Therefore, the equations applicable at the subsonic inflow boundary are the
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\.
@ boundary conditions and one waveline equation: ;
;
Po = Poimlm (B.48) 4
\
!
TO = TO‘...ﬂm (B.49) .
8 = einﬁm (B.SO)
!i
At X
Pe—(pa)g u6+-2— (p a’ Vy)ﬁ = C, (B.51) ¢
L
: Since only one compatibility equation is used at the subsonic inflow !
K boundary, it must be computed without simplification. This is achieved A
; 3
+
. through iteration. :
‘ i
, ﬁ The Mach number, M, is the iteration variable in the subsonic inflow
]
X . . . . . \
5 boundary point unit process. Knowing an estimated forward time Mach .
‘ .
: . . . iy
. number and the boundary conditions given by equations (B.48) to (B.50), \
. several additional properties can be computed. In terms of known properties by
': of the flow and the Mach number: .}
N
1 1 .l
: Py 1 -1
D o 1+ =M :
2 3
4 by
4
] n
3 - :
..;_1 -
: P =P, —1—1—— (B.53) v
3 l + _’7___M2 5
. 2 "
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L ;
M (4R Ty)?
u = p T (B.54)
) — 2
[l+tan2(9)l2 1+~12—1—M2]
v = u tan(f) (B.55)

The iterative process used to find property values at subsonic inflow
boundary points is described next. For both predictor and corrector steps, the
procedure is initiated by guessing the forward time Mach number at the inflow
4 point being considered. For the first time step, the Mach number guess is
5 calculated from the property values at the initial-value surface. Subsequently

the initial Mach number guess is calculated from the property values at the
@- current time level. The guessed Mach nurnbgr is used in equations (B.52) to

(B.55) to calculate guessed forward time values of p, u, v, and P.

o Equation (B.51) is solved for the pressure at the solution point:

. At
" Py = (pa)g ug— '2_ (932 Vy)6+Cl (B.56)

In equation (B.56) the value of vy at the forward time level solution point is
o approximated by the value of vy at the current time level sclution point. This
lagging of the cross derivative reduces the method to first-order in time at the
inflow boundary points. As the solution is marched in time to a steady

*’ solution, the first-order error term will approach zero. This handling of the

e cross derivative term is necessary to avoid violating the physical domain of

E B

dependence at the forward time level.
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Equations (B.52) to (B.55) are used to calculate guessed values of the
solution properties at the forward time level. These guessed property values
are used in equation (B.56) to calculate the pressure at the forward time
solution point. If the calculated value of pressure and the guessed value of
pressure are equal, to within a specified tolerance, the Mach number guess is
correct and the guessed property values are the forward time level values. If
the calculated and guessed values are not approximately equal, a zero finding
secant method is used to home in on the correct Mach number. For the
results presented in Section VII, a tolerance of 107% was used to evaluate

convergence of the pressure difference.

For the predictor step of the calculations, the averaged coefficient values
designated by double subscripts are replaced by the corresponding values at

the current time [evel solution surface.

B.2.4 SOLUTION PROCEDURE. At each time level all the unit processes
discussed in Appendix B.2.3 are applied to a given cascade geometry and a

current time level solution surface to advance the solution in time.

The flowfield initial conditions are set in the same manner used by the
MacCormack flow solver except that primitive variables are set rather than
conservation variables. The MacCormack code initial-value surface is

described in Section VI.1.

The time step calculation is based on the Courant Friedrichs Lewy (CFL)
[24] stability criterion. A procedure similar to the the one described in Section

VI.2.1 is used to conservatively approximate the CFL time limit at each grid
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point. The characteristics code and MacCormack code time step limit
analyses differ only in so far as the applicable convex hulls illustrated in

Figures B-3 and 6-1 differ.

The MacCormack code requires explicit smoothing to converge. Since the
characteristics code does not require smoothing for the cases discussed in
Section VII, none is applied. The capability of the code could be extended well

into the transonic range with the addition of explicit smoothing.

In the present investigation the characteristics code is marched in time
until a steady solution is achieved. The convergence check, used at each time
step, consists of comparing the largest normalized change in pressure at any
solution point in the flowfield to a specified tolerance. The current time level
pressure at each point is used to normalize the change in pressure at that
point. For the results discussed in Section VII, solutions were converged to a

tolerance of 1075,
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APPENDIX C

CONSERVATION VARIABLE COMPATIBILITY
EQUATIONS

This Appendix presents the primitive variable and conservative variable
compatibility equations and demonstrates the equivalence of these two sets of

equations.

C.1 COMPATIBILITY EQUATIONS

As described in Appendix B, characteristic theory uses the primitive
variable form of the governing differential equations of motion to derive the
pathline and waveline equations. The primitive variable compalibility

equations are repeated here for convenience.
The pathline equation is the energy equation in primitive variable form.

DP s D
= —£=0 C.1
Dt ° Dt (C.1)

The waveline equation is formed by the following linear combination of the

primitive variable governing equations:

o ees primitive N

primitive . primitive
. variable .
, | variable . variable C.o
continuity — paii vector |+ energy =0 (C.2)

. momentum .

equation . equation
| equation |

which reduces to:
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O Zp . 9V 2[ A q ]
— ® — /. -— T o\/ — '3
™ paii . +pa? | V-V —5:(a- V)V | =0 (C.3)

Because these equations are cast in primitive variables, the Kentzer method 2]
is normally applied in primitive variables. However, a conservation variable
variation of the Kentzer method is being developed and applied in the present

investigation.

The conservation variable form of the governing equations written in vector

notation are repeated here for convenience:

(0)y =€ ' (C.4) ,
(WV), = M (C.5) ]
(pe), = € (C6) :
¢
where

€ =-V(oV) (C.7) )
A = ~V:(pVV) - VP (C.8) )

€ = —V-[V(pe +P) (C.9)

i -

The following linear combination of the conservation variable form of the

governing equations produces the conservation variable pathline equation:

. (conservation . '
conservation abl conservation -
v? a? variable vanable variable \
—_—- - -V vector + =0 (C.10) \
2 ~—1 continuity energy A
. momentum . '

equation . equation
equation _J \

- e

4
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h
.'
Y
o Substituting equations (C.4) to (C.6) into equation (C.10) gives the '.:
conservation variable form of the pathline equation in vector notation.
:
V2 a’ T,V V? a’ - N
~_ -V + (pe), = | — — € -V- 4l +¢ (C1l ;
2 -1 [t (oV)y + (pe) 2 =1 ( ) ::
* - . - - '
In a similar manner, the following linear combination of the conservation ¢
'
variable form of the governing equations produces the conservation variable .'f
)
s
waveline equation:
- ] h
. conservation . W
conservation ab] conservation ¢
V2  af'V || variable af vaniable variable g
—_—t— . - + vector + =0 N
2 ~—1 continuity | energy
. momentum . '
equation . equation .
equation o
v‘.'
(Ca2) '
O
N
Substituting equations (C.4) to (C.6) into equation (C.12) gives the v
3
conservation variable waveline equation in vector notation. :,
v?  aiV afi i
—+ -1V+ {(pV), + ’
2 -1 0t —1 (6V)y +(pe), "
o
- :
Vv 5, o —_ G
=|—+2" ¢ - |V+-2| 4 +¢ (C.13) !
2 y—1 ~y—1
.
"
By applying the Kentzer method to the compatibility equations, equations Y
(C.11) and (C.13), the appropriate set of conservation variable equations is
derived for each type of boundary condition. These conservative variable N
L
formulations are used in the present investization. Ry
Y
'

LG I T o)
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It is important to note that the conservation variable compatibility
equations have not been cast in terms of directional derivatives along
characteristic surfaces. Therefore, these conservation variable compatibility
equations can not be used to develop a numerical method of characteristics

based on conservation variables.

C.2 EQUIVALENCE OF CONSERVATION VARIABLE AND PRIMITIVE
VARIABLE COMPATIBILITY EQUATIONS

Equations (C.4) to (C.6) can be expanded into a variety of primitive
variable forms. The following primitive variable continuity, vector
momentum, and energy equations have been shown, in Appendix A, to be
equivalent to equations (C.4) to (C.6).

For the continuity equation:

Dp " =
i +p(VV)=0 (C.14)

For the vector momentum equation:

Dp DV Tyt UP =
Vm +r 5y +pV(V-V)+ VP =0 (C.15)
or
DV
? s +VP =0 (C.16)

For the energy equation:
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D
1 DP V' Dp 2 P v?
DL 2 ——+ ——(VV)+p—(VV)+V-TP =0 (C17
—1 Dt "2 Dt TF Dy +Al,,___1( J+r—(VV)+ (C.17)
or
DE a2y (C.18)
Dt Dt

C.2.1 PATHLINE COMPATIBILITY EQUATION. The equivalence of the
conservation variable pathline equation and the primitive variable pathline

equation is demonstrated in this section.

Substituting the governing equations, which have been expanded into
primitive variables, equations (C.14), (C.15), and (C.17), into equation (C.10)

yields:

v? a?

2 ~r-1

-V |V

+p21+VP

Dp ..
+p(VV) or

Dp -
Dt Dt +p(VY)

V2
1 DP V2 Dp 2 ~P A%
—_— 2 X2 e B Tt o~— (VN +VUP =0 (C.19
I et e b T T (VW e (V) (C.19)

Distributing the coefficients of the continuity and momentum equation terms

yields:

Par S ar-are )

S e ™ gy ]
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2 2 2
V" [De |V o(V-V)~ | 2— Dp _ 2 (V)
2 |Dt 2 7—1 | Dt —1
_ve|De |_ e w2V _goop, 1 DP
e |~V V=V T2 Do
V2
VIDo 2 4P V2
— —= L (T4 p—(TV)+TTP =0  (C.20
t S D T o +A“_1( ,+;2( )+ (C.20)
Canceling opposite terms and grouping like terms leaves:
V2
1 DP a® Dp | P a% DV o
- EA LA 0 Sy vV V.= =0 (C.21
=1 Dt y—1 Dt ~—1 Tre— ( )+ﬂ Dt + Dt (C )
D(V*/2)

, the last term in equation (C.21) is zero. In addition.

Since V- DV =
Dt Dt

a? = AP /p, for a perfect gas, so the third term in equation (C.21) is also zero.

Therefore, equation (C.21) reduces to:

DP _ D2 _, (C.22)

Dt Dt

Thus, the conservation variable form of the pathline equation is equivalent to

the primitive variable form of the pathline equation.

C.2.2 WAVELINE COMPATIBILITY EQUATION. The equivalence of the
conservation variable waveline equation and the primitive variable waveline

equation is demonstrated in this section.

Y T w B W

-

- o

b - e

-

- -
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In Section C.2.1 the conservation variable pathline equation, equation
(C.10), is shown to be equivalent to the primitive variable pathline equation,
equation (C.1). Therefore, if the conservation variable pathline equation,
equation (C.10), is subtracted from the conservation variable waveline
equation, equation (C.12), and the primitive variable pathline equation,
equation (C.1), is subtracted from the primitive variable waveline equation,
equation (C.2), the resulting two equations will be equivalent if the '
conservation variable and primitive variable forms of the waveline

compatability equation are equivalent.

- 9

Subtracting equation (C.10) from equation (C.12) leaves:

. {conservation
conservation ab] v
. variable i
afi-V +a’ variable ah , .
—_— - - ‘ vector =0 {C.23) :

~—1 continuity ~—1
. momentum
equation .
equation

Subtracting equation (C.1) from equation (C.2) leaves:

o egs [ primitive v
primitive v

. variable
) variable N . _o (C.24) ;
continuity |~ #2" vector 1= " :
. momentum '

equation )
{ equation

Inserting equations (C.14) and (C.16) into equation (C.24) and rearranging to

form substantial derivatives where possible yields:

DV VP

_+—.

Dt p

al ~ pafi- =0 (C.25)

Dp -
o Y V)

S A IR I T v e TN RN IRV AN Y (S " oo Wy o8y, o8
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{
0 Substituting equations (C.14) and (C.15) into equation (C.23) yields: ¥

Dp

[aﬁ'V+az V;

1

ah_

DV
+ v +VP|=0 s

§—
i

Dp | v
Y +p(VV)

(C.26) 0

Rearranging equation (C.26) yields:

(ar‘rV)%tﬂ +(ai V)o(V-V) 4 a?

Dp - | — (255 2L
o+ 0(V) |- (V) 2

—(an-V)p(V-V) = paii: —pafi-—— = (C.27) )

Canceling opposite terms leaves: ‘¢

oV, vp

—|=o (C.28) b4

Dt

Do +p(\'~V)}—paﬁ-

Equation (C.28) is identical to equation (C.25). Therefore, the conservation

variable waveline equation is equivalent to the primitive variable waveline

equation.

- g VX 5 3w g
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APPENDIX D

UNIT PROCESSES

Several unit processes are employed in the computation of cascade

flowfields. Each of the following types of flowfield points must be considered:
1. interior points,
2. solid wall boundary points,
3. trailing edge point,
4. subsonic inlet boundary points,
5. subsonic exit boundary points, and

6. supersonic exit boundary points.
All periodic boundary points and grid cut points lie in one of the regions listed
above. Therefore, no additional sets of equations are required to compute
these points. However, because of their location on the computational grid,

they do require special handling of indices.

Appendix D.1 summarizes the MacCormack method [3] and the Kentzer

method (2] prior to deriving the unit processes listed above.

The equations derived in this section are presented in terms of physical
domain (x,y,t) derivatives. Prior to their implementation, these equations are
transformed into computational space. At interior points the governing

equations are transformed into the strong conservation-law form as shown in

AN KRN "i‘)-";‘.""l O L"Q AWOSCIANA ', . 'l'l' x ‘l‘a,“l-" l'ut'o. St y PMJMK,MﬁﬁWMMj
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.v
i
‘l
0 equation (2.33). At the boundaries the transformed equations consists of the .
'l
same groupings of space derivatives transformed into strong conservation-law
form. However, these derivative terms have coefficients which are not affected !
jat
by the transformation. Therefore, the boundary point equations are in a ,:
4
weak conservation form. o
At interior points the Euler equations apply. Those equations are repeated ::
.‘
here for convenience: 2
W
)
(p)y =€ (D.1) v
iy
(pV), = M (D.2) o
2
)
(pe), = € (D.3) s
"
M)
C’ where €, M, and € contain the space derivatives appearing in the
e . . . . . v
continuity, vector momentum, and energy equations, respectively. Written in s:
ht
vector notation, €, # , and € are: \
€ =-—V(pV) (D.4) Q
4
—_ &
M = —V-(pVV)- VP (D.5) v
.
€ = —V-[V(pe +P)] (D.6) A
¢
At all boundary points, the Kentzer method is used to determine the .:
appropriate set of equations to be solved. At all interior and all boundary
— (]
points, the space derivative terms €, # , and €, appear. In addition, at all y
interior and all boundary points, the MacCormack explicit finite difference h
o]
"
"
]
\J
t
.;.




method is used to discretize the appropriate equations.

D.1 THE MACCORMACK METHOD

The MacCormack explicit finite difference method [2] is used in this
investigation to calculate the flowfield solution. This predictor-corrector

method is second-order accurate in time and space.

The transformed governing equations in matrix form are presented in

Section I1.3.3 and are repeated here for convenience:

§t+P_J{+I?,, =0 (D.7)

I(pU) I{(pV)
I(puU + £,P) I(puV + 1,P)
(

E=11pvu+¢,Pp) = |1(ovV +1,P)

I|(pe +P)U] 1[(pe +P)V]

. ae two steps of the MacCormack method can be summarized, for the
present investigation, by the following equations. The predictor space

derivatives are all computed using current time level property values:
QT = QY — At J; [F [Ef] +F [F ] (D.8)

The corrector space de-ivatives are all computed using forward time level

property values:

m] (D.9)

QT = Q- At Ji; [B [Ei] +B [F

To achieve second order accuracy in time and space, the results of these two

d

]
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% steps are averaged:

So+l _ 1 | RoFT, Aol
QY = 5 [ DY ] (D.10)

Efficiency is improved by combining equations (D.9) and (D.10) in the following

manner:

Q= B (E ]
), £ l.J

1
2

— — 1 — o7l

[Qi?jn"'Qil,‘j_At i " '*’B'Fu ]inj+ ” (D.11)
As shown in equations (D.8), (D.9), and (D.11), F() are first-order forward-

difference operators and B() are first-order backward-difference operators.

Those operators are:

: = (ER, ,—E")
¥ D i 2 l:J
. F(E) Ac
és 3
" F(F2) (Fij41 —F5)
; i Ay
mo¥l _ po¥FT
B(EFT) — (B —E)
{ AE
~o¥l] _ oonFT
B(F2TT) — (FO —F55)
! An
, By incorporating the forward-difference operators, the MacCormack predictor
equation, equation (D.8), applied to the transformed governing equations in
matrix form becomes:
_ _ EX,—E: F2,, —F&
o¥T _ Ao _ N 1+1,) L 1,)+1 1,)
QY = Qi — Aty Y; Ay (D.12)

®

]
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Similarly, by incorporating the backward-difference operators, the

MacCormack corrector equation, equation (D.11), applied to the transformed

governing equations in matrix form becomes: -
N
- _ _ ExFT_Ee¥l  po¥T _poil b
n+1 — n n¥T 1) 1_11] 1,) lx.l_l

'
For the present investigation, all grid spacings on the computational grid are "
’.

f

oo (s X}
urnity (i.e., Af = An = 1.0). \
s
At each of the boundaries, one of the forward- or the backward-difference N
~{

operations requires flow properties and transformation metrics outside the

(3
flowfield to approximate flow property partial derivatives at the boundaries. ’
W
Therefore, first-order or second-order extrapolations are used to approximate ,3
[
these values outside boundaries. Then the MacCormack method, as described :‘f
'

above, is applied to the appropriate boundary point equations to evaluate i
i,

Q"’

boundary property values. :1
o

|
D.2 THE KENTZER METHOD '
"
As described in Section IIl, the Kentzer method is being applied, in the :

V)
t

present investigation, in conservation variables. Therefore, at each of the ‘
\

boundaries, the conservation variable pathline equation, equation (3.12), and !
jd
Wi

the conservation variable waveline equation, equation (3.13), combine with the by
b

required boundary conditions to form the appropriate set of equations to )
0y
describe the pertinent physics. Equations (3.12) and (3.13) are repeated here E::
U

]

for convenience: ::
d

"

%

t
A
"v
&
]
; \
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2 2 -
Yy _ }g ~V-# +¢ (D.14)

v o anV afi
P O V+ 1 (V) + (pe)y ;
2 . - | :
- | iﬂ}g |+ 7 +e (D.15)
2 ~—1 e !

In order to implement the boundary point equations, a local coordinate
system is established at the boundary point. The local boundary coordinates
are defined by b and ¢, where b = bi§+bjj is the unit vector normal to the

boundary and ¢ = ci§+cjj is the unit vector tangent to the boundary.

At any given point, an infinite number of wave surfaces exist which could
G be chosen for application of the waveline equation. Since a maximum of four
equations can be independent in an unsteady two-dimensional flow, three
waveline equations are used in conjunction with the pathline equation to
describe the properties at a point. The wave surface unit normal vectors,
fi;, Ny, and i3, are chosen such that they are equally distributed and aligned s
r with the boundary under consideration. The #; wave surface unit normal
vector is chosen to be the unit vector normal to the boundary, b. Thus, the

unit normal vectors are defined in the following manner: :

ﬁl = B (D.lﬁ)
13+-\L§ ¢

1
Ny = — — D.17
N, 9 2 ( )

('3

n

-
)
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- 1
D3=—';

b— (D.18)

\/:Eé
2

All five of these unit vectors, b, &, fi;, fiy, and fi;, are shown at three boundary

point locations on a C-grid in Figure D-1.

D.3 INTERIOR POINT UNIT PROCESS

At interior points, the MacCormack method is applied directly to the
transformed governing equations in the strong conservation-law form, equation
(2.33). The resulting finite difference equations are used to advance the

solution in time.

D.4 BLADE SURFACE BOUNDARY POINT UNIT PROCESS

In a two-dimensional cascade flow, the surface of the blade forms the only
solid wall boundary. The boundary condition applicable at a free slip solid

boundary point is that the velocity normal to the boundary is zero:
bV =0 (D.19)
Multiplication by the density yields an equivalent boundary condition:
b(pV) =0 (D.20)

Since the blade geometry and the boundary condition are invariant with

respect to time, the following is also a valid boundary condition:

b-(pV), =0 (D.21)

Expanding equation (D.20) to scalar form and rearranging provides an

expression for the y-1nomentum, pv, in terms of the x-momentum, pu:

B~y

:'l’:'ﬁ‘ !,’t.iilla.b'l Tt 0'415'0."!,).9&_‘L,Q’,\.‘l.'.l. : .l. n‘.?a’WLd.?o’.’ .C.v 'ﬁfﬂkﬁﬂmﬂwﬁﬁM'ﬁ&‘ﬂ
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Figure D-1. Unit vectors 5,

¢, i}, fiy, and fi; on three boundaries.
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bi Cj
Al il ol b

pu (D.22)

To determine the applicable equations at the blade surface boundary point,

the governing equations, equations (D.1) to (D.3), are replaced by compatibility

The waveline equation, equation

equations, equations (D.14) and (D.15).

(D.15), is applied in three wave surfaces corresponding to the wave surface

unit normal vectors i, fi,, and i3, given by equations (D.16) to (D.18). Since

the boundary condition, equation (D.19), must be incorporated, the waveline

equation corresponding to vector i, (which was intentionally placed outside

the flowfield) is replaced by the boundary condition. The applicable equations

at a solid wall boundary point are the boundary condition, equation (D.19),

the pathline equation, equation (D.14), and the waveline equation, equation

(D.15), applied in the remaining two wave surfaces corresponding to wave

surface unit normal vectors fiy and fi;. Thus,

bV =0 (D.23)

Vv? a?

2 ~y—1

}/’t —v'(pv)t +(pe), =

o -, W4

V2 aﬁz'v
—+
2 ~—1

Oy —

V2
2

e B TOOGIRN 0 ' M
R O N T B S g e T N Y T T s G IR TR B e M I
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v?  afyV afi;
> vt o V+ ](Pv) + (e,
2 afgV af -
- -\é—+ ~31 ¢ — |V+ M +# (D.26)
it =

Equations (D.23) to (D.26) comprise an appropriate set of equations for the
solid wall boundary point. However, these equations are unnecessarily
complicated. Equations (D.24) to (D.26) each contain more than one time
derivative. These four equations can be rearranged into a form which is
simpler and more computationally efficient to solve by a finite difference
method. The rearrangement and simplification of this set of equations is

demonstrated next.

Adding the two waveline equations, equations (D.25) and (D.26), and

rearranging yields:

a
Vig

— oV 4 ————= (8

* ) ] (V)= A | +2((pe),~E | =0 (D.27)

l

Subtracting twice the pathline equation, equation (D.24), from equation (D.27),

using the result that fi, +1i, =—b, and rearranging yields:
(67 ~2a [ip,—€) = B-((sV),— 4| (D.28)

Implementing the boundary condition and solving for the temporal derivative

of density leaves:
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o pt=(6+

Equation (D.29) is solved for the density at the solid blade surface boundary

oo G ~

a

2L]B~ Y (D.29)

point. W

The derivation of the next solid wall boundary point equation starts by oy

finding another expression for the term (p,—% ). Subtracting the fi; waveline "

equation, equation (D.26), from the A, waveline equation, equation (D.25), )

recognizing that fi, —fi; = V3 ¢, and simplifying the result produces: 0
(V)P =€) = &[(pV),— M ] (D-30) 3

Adding b times equation (D.28) to & times equation (D.30) yields: "
(V) A = [B(B-V—za)w(alv) ](nt—% ) (D.31) o]

Simplifying equation (D.31) leaves:
(V)= F + [(V—20) 5, —¢) (D.32) '

Using equation (D.28) to eliminate the continuity terms produces: N

(pV)t =M + [(v—2af))] B.[fpv)r‘ M ]

(D.33) W
bV - 2a]

Applying the boundary condition and rearranging equation (D.33) leaves: \

v

(V)= M + —2;—6](8-22 ) (D.34) o

Equation (D.34) can be broken into scalar components. The x direction "

AL W S LN VAV S SN Sy
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0 component of equation (D.34) is:

(pu), = A, + | —
2a

—bi](f)- A ) (D.35)

where /; is the x direction component of the vector momentum equation

space derivatives. Equation (D.35) is solved for the x direction compon- 1t of

momentum, pu, at the solid blade surface boundary point.

Once the x direction component of momentum is known at the new time
level, the y direction component of momentum is calculated using the
boundary condition. Specifically, equation (D.22) is solved based on the local
coordinate system at the boundary point in question. Equation (D.22) is

repeated here for convenience:
c - |

The last equation solved at the blade surface boundary point is based on

]pu (D.36)

n|o
LI L Sy

the pathline equation, equation (D.14). Solving equation (D.14) for the

temporal energy derivative term yields:

v:_ _al

2 71

(e), = € — (e =€) +V((pV),— A | (D-37)

Using equations (D.29) and (D.34) to eliminate the continuity and vector
momentum terms respectively, incorporating the boundary condition, and

rearranging leaves:

2 —
(pe)y =% + '4\'[; + —2'(’7%1—)}(5 M) (D.38)
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i

\

]

‘ Equation (D.38) is solved for the total energy, pe, at the blade surface !

boundary point.

Equations (D.29), (D.35), (D.36), and (D.38) are solved at each blade X
surface boundary point to determine the solution at the new time level. Those 2

four equations are repeated here:

po=€ + —1—]6- Vi (D.39) |
2a
]
~ U
(pu), = M; + | ===, ](b' ) (D.40) :
i :
¢ 3
pv = [C—J pu (D.41) !
G ‘
: V2 a ~A =
=€ + | —+—>—|b 4 D. ]
(pe), ol el 20-1) ]( ) (D.42) )

The MacCormack method backward corrector calculations require
predicted property values one row of grid points inside the solid boundary.

This is achieved by extrapolating predicted values from the flowfield. Both

(e g ey

linear and quadratic extrapolation have been used at the blade surface during !

the current research effort. With either approach some explicit smoothing is

. A >

required to stabilize the solution. Using linear extrapolation produces good
results. When quadratic extrapolation is used, the smoothing requirement is

increased to such an extent that some significant flow features are smeared

ey

-l

out. Therefore, linear extrapolation is used in the present investigation.

.,
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@ D.5 TRAILING EDGE POINT UNIT PROCESS

In the inviscid cascade flowfield, the Kutta condition is enforced at the
trailing edge of the blade. Specifically, the flows leaving the two sides of the
blade surface at the trailing edge are forced to flow paralle]l to each other in a
direction such that the static pressure is equal on the two sides of the trailing

edge point.

In the present investigation, the requirements listed above are enforced by
installing a small imaginary solid wall segment which is hinged at the trailing
edge point. The flow on each side of the hinged wall segment is solved
independently, in a manner similar to the technique described in Section D.4
for the blade surface point. By forcing the flow on both sides of the wall
segment to follow the wall, the flows on the two sides of the trailing edge are

@
c forced to be parallel to each other.

After solving for the flow properties on each side of the hinged wall
segment independently, the pressure difference between the two sides is
checked. If the difference is not equal to zero, to within a specified tolerance,
a zero finding secant method is used to correct the wall orientation (How
angle) toward the angle where the pressures will be equal. This procedure is
iterated until the pressure difference between the pressure and suction sides of

the blade, at the trailing edge, is approximately zero.

As mentioned above, the flow on each side of the imaginary hinged wall
segment is solved in a manner similar to the grid points which lie on the

remainder of the blade surface. However, because the imaginary wall segment
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is not stationary, but instead is allowed to pivot, the local coordinate systems,
set up on each side of the wall at the trailing edge points, also pivot. This is

illustrated in Figure D-2.

Throughout the trailing edge point unit process derivation, unless otherwise
specified, the local coordinate system unit vectors, b and ¢, are defined with
respect to their orientation at the forward time level, that is, the time level of
the predicted and corrected properties. Therefore, unless otherwise specified,
during the iterative solution process, b is aligned perpendicular to, and ¢ is
aligned parallel to the hinged wall segment at the angle the wall is assumed to

be at, at the forward time level, during that iteration.

The boundary condition applicable at the trailing edge point imaginary
hinged wall segment is that the velocity normal to the wall segment, at the

hinge, at its forward time level, is zero.
bV =0 (D.43)
Multiplication by the density yields an equivalent boundary condition.
b(pV) =0 (D.44)

The momentum terms and the local coordinate system change with time.

Therefore, taking the derivative of equation (D.44) with respect to time yields:

by (pV) +b(oV), = 0 (D.45)

Expanding equation (D.44) to scalar form and rearranging provides an

expression for the y-momentum, pv, in terms of the x-momentum, pu.

Car ™
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~—— Unit vectors at current
time level

————-> Unit vectors adjusted to
new flow direction

Suction side flow

Pressure side flo&

e
pressure

epressure

{’\sucﬂon

Figure D-2. Trailing edge point unit vectors and flow directions.
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pu (D.46)

Equation (D.46) is true at any time as long as the unit vectors and the velocity

are all defined for the same time level.

Later in this development, a temporal version of equation (D.46) is

required. Taking the derivative of equation (D.46) with respect to time yields:

(pv), = [—J (pu) +

]

S

(pu), (D.47)

To determine the applicable equations at the trailing edge point, the
governing equations, equations (D.1) to (D.3), are replaced with compatibility
equations, equations (D.14) and (D.15). The waveline equation, equation
(D.15), is applied in three wave surfaces corresponding to the wave surface
unit normal vectors fi;, fiy, and fi;, given by equations (D.16) to (D.18). Since
o, = b, the waveline equation corresponding to vector i, extends beyond the
hinged wall segment and therefore, does not affect the flow on the side of the
wall under consideration. As at the blade surface boundary condition, the A,
waveline is intentionally placed outside the range of influence of the flow, and
is replaced by the boundary condition, equation (D.43). Thus, the applicable
equations at the trailing edge point are the boundary condition, equation
(D.43), the pathline equation, equation (D.14), and the waveline equation,
equation (D.15), applied in the remaining two wave surfaces corresponding to

wave surface unit normal vectors fi, and fi;. Thus,
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e bV =0 (D-48)

vy
*r ‘l

\& a’
2 ~—1

]fg —V- 4 +¢ (D.49)

V2 a.ﬁfv a.fl2
o vt T V+ — }'(Pv)t + (pe)t
2 afi,’V ai —
B A T PR | B A (D.50)
2 Rl 7=
v?  afgV afiy
P v+ — ]’(Pv)t + (pe),
7. 2 afi, V ai —
t B R PR b T Ny AR (D.51)
2 4—1 Y—

Equations (D.48) to (D.51) comprise an appropriate set of equations for the
flows on the two sides of the hinged wall segment (trailing edge point).
However, these equations are unnecessarily complicated. Equations (D.49) to
(D.51) each contain more than one time derivative. These four equations can
be rearranged into a form which is simpler and more computationally efficient
when solved by a finite difference method. The rearrangement and

simplification of this set of equations is demonstrated next.

Adding the two waveline equations, equations (D.50) and (D.51), and

rearranging yields:
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V2+i(i2—-+-—fil3)i](pt—<€ )

Subtracting twice the pathline equation, equation (D.49), from equation (D.52),

4

?
using the result that fi, +1fi; =—b, and rearranging yields: \
_ ;
. . - *
[b'V—2a](p't—‘€ ) = b|(pV), — M ] (D.53) -
o
()
Solving for the temporal derivative of density leaves: ::
o7 X
b-[(pV), — A | ‘.
lb'V—2a] ,
ht
"
The boundary condition can not be used to cancel terms in equation (D.54) as "
\3

ﬁé in equation (D.29) because, if the imaginary wall segment has pivoted, the
¥
velocity vector at the previous time step will not be parallel to the wall at its ::‘
D
!
A 1,
new orientation. In other words, byeyw Vg # 0. &
Equation (D.54) is solved for the density on each side of the hinged wall y,
51
M
segment (trailing edge point) to advance the solution in time. However, prior
: 0
to solving equation (D.54), the temporal derivatives of momentum must be N
' calculated. :'f
’.v
3
The first step in deriving the equations which will be used to calculate the '.:
L 7S
momentum components is to find another expression for the term (p,—% ). .
f
Subtracting the fi; waveline equation, equation (D.51), from the fi, waveline !
equation, equation (D.50), recognizing that i, —fi; = V3 ¢, and simplifying the \
o]
& :
'\
.
I
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Q result produces:

(EV)p—€) = &[(pV),— 4 | (D.55)
Adding b times equation (D.53) to ¢ times equation (D.55) yields:
(V)= A = (55T —20)+&(eV) Jin—€) (D.56)
Simplifying equation (D.56) leaves:
(oV), = M + [(v-—2a5)](pt-—‘é’ ) (D.57)
Expanding equation (D.57) into its scalar components yields:
(pu), = A, +(u—2ab)(p, € ) (D.58)
and

vy (pv)y = A +(v—2ab)(p,—€) (D.59)

In order to eliminate the continuity terms from these equations, define the

u —2ab; 7
scalar g = ————. Then subtract g times equation (D.59) from equation
V= 23.bj
(D.58). ¢
y (pu),—g(pv), = M; —g M, (D.60)
...‘
K Using equation (D.47) to eliminate (pv), from equation (D.60) produces: ,
i
! S
(pu),—g o (pu) + o (pu) | = M; —g M, (D.61)
ik i
Solving equation (D.61) for the (pu), term yields: N

#

.........
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&

)

1

¢ ; ~
M +g | =M+ f](f’u)] A

(/)u)t = Sl (D62) ':
5 J

1—¢g C-‘] N

] "

:.

Equation (D.62) is solved for the x direction component of momenium on
each side of the imaginary hinged wall segment at the blade trailing edge
point to advance the solution in t{ime. At the predictor step of the
MacCormack method, the current time level values of the fluid properties and '

of the ¢ vector are used. At the corrector step of the MacCormack method,

the predicted property values and the corresponding & vector are used. i

Obviously, calculation of the temporal derivative of the ratio of the ¢

&

0

components of ¢ requires ¢ components at the current time level and assumed :.‘

$

G ¢ components at the forward time level. ‘
o &
£

Once the x direction component of momentum is known at the new time N

level, the y direction component of momentum is calculated using the X

boundary condition. Specifically, equation (D.46) is solved based on the local

\
\:
coordinate system at the forward time level. Equation (D.46) is repeated here !
- "
for convenience. '
¢; v
pv = | |pu (D.63) "
< 0
)
The last equation solved at the trailing edge boundary point in the present
"
investigation is based on the pathline equation, equation (D.14). Solving )
\
]
equation (D.14) for the temporal energy term yields: W

L0
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V2 3.2

2 y—1

(pe), = € — (0, =€ )+ V(o) — A | (D.64)

Using equation (D.53) to eliminate the continuity term and rearranging leaves:

V? a?
(re) =€ + [V+ -—Z;—_?%—l— B (V)= A | (D.65)

Equation (D.65) is soived for the energy, pe, at the blade surface boundary

point to advance the solution in time.

Solving equations (D.54) and (D.65) requires temporal derivatives of
momentum. Therefore, equations (D.62) and (D.63) are solved, then the
temporal derivatives of momentum are calculated numerically and substituted

into equations (D.54) and (D.65).

In summary, equations (D.54), (D.62), (D.63), and (D.65) are solved on each
side of the imaginary hinged wall segment located at the blade trailing edge to
advance the solution in time. The solution process is iterated, changing the
flow angle at each iteration, until the pressures on the two sides of the trailing
edge are equal to within a specified tolerance. For the results presented in
Section VII, a tolerance of 107% is used to evaluate convergence of the
difference in the two values of pressure normalized by the inflow total
pressure. Equations (D.54), (D.62), (D.63), ‘and (D.65) are repeated here for

convenience:

b((oV)e— A |

p,=%€ + (D.66)

(67— 2a
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(pe), =€ + |V+ —22—3—_%—%1— b}V — A ] (D.69)

where g = (u—2ab;)/(v—2ab;). In the denominator of equation (D.67), the ¢
vector is paraliel to the hinged wall segment at the current time level for the
predictor calculations, and is parallel to the hinged wall segment at its
assumed position at the forward time level for the corrector calculations. For
both steps, the temporal derivative of the ratio of the & components is equal to
the ratio at the forward time level, minus the ratio at the current time level,

all divided by the time step.

The same set of equations must be solved at the predictor and the
corrector steps of the MacCormack method. Therefore, the flow angle, and
the corresponding forward time level definitions of b and ¢, must be the same
for both steps. This constrains the iteration sequence to include both the
predictor and corrector steps. Therefore, all points on the C-grid except the
trailing edge point are predicted, next the trailing edge point is iteratively

predicted and corrected, then all remaining points are corrected.

y 3 -‘)‘u"’x"ﬁ‘n'.‘y‘b‘.-‘l aﬁ‘ ¥



B AR RN RSN RTINS A TGO A AT Y "ata gt ata

207

D.6 SUBSONIC INFLOW BOUNDARY POINT UNIT PROCESS

When the component of the fluid velocity perpendicular to the inflow
boundary is less than the local speed of sound, the fluid properties at that
boundary are dependent upon both upstream and downstream phenomena. If
the fluid velocity were zero, the fluid properties would be influenced from all
directions equally. When the velocity is not negligible, a greater influence will
be felt from the upstream direction. From a characteristic perspective, this
means that most of the base of the Mach cone (domain of dependence) lies

outside the computationa] domain at the subsonic inflow boundary.

At an inflow boundary, one to four boundary conditions can be set. It
would only be appropriate to set four boundary cpnditions if the flow
component crossing the inflow boundary were supersonic, and therefore, the
flow properties were totally dependent upon the upstream conditions. Setting
three boundary conditions implies that a majority, but not all of the flow
influences are comming from the upstream direction. For the present

investigation, three boundary conditions are set at the inflow boundary.

The boundary conditions chosen for the subsonic inflow boundary are those
which reflect the properties of the flow which are most likely to be known
upstream of a turbine blade row. Specifically, the stagnation pressure, Py, the
stagnation temperature, T, and the flow angle, 6, are specified as boundary

conditions at the inflow boundary.

To determine the applicable equations at the subsonic inflow boundary, the

governing equations, equations (D.1) to (D.3), are replaced by compatibility
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equations, equations (D.14) and (D.15). The waveline equation, equation
(D.15), is applied in three wave surfaces corresponding to the wave surface
unit normal vectors f,, fiy, and fi;, given by equations (D.16) to (D.18). At the
inflow boundary the unit vector b is oriented perpendicular to the inflow
boundary and pointing in. This situation is illustrated in Figure D-1. Thus,
the wavelines corresponding to the 6, and iy vectors and the pathline, which
are all outside the computational domain, are replaced by the three boundary
conditions. Only the waveline corresponding to the i, unit vector is placed
inside the computational domain. Thus, the applicable equations at the
subsonic inflow boundary are the three boundary conditions, Py, Ty, and 6,
and the waveline equation applied along the i, unit vector.

PO=P

Db

T0=T0

nthav

=20

FULEY

-+

v? afi; 'V
2 ~—1 Pt

V2 : f
= | = . D.73
2 + =1 1 ( )

Equations (D.70) to (D.73) comprise an appropriate set of equations for the
inlow boundary. In previous unit process derivations, multiple compatibility

equations made it possible to use linear algebra to simplify the applicable
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o equations prior to implementation. Since only one compatibility equation is
used at the subsonic inflow boundary, it must be computed without
simplification. This means that all the temporal derivatives in equation (D.73)

must be evaluated simultaneously. This is achieved through iteration.

The Mach number, M, is the iteration variable in the subsonic inflow
boundary point unit process. Knowing an estimated forward time Mach
number and the boundary conditions given by equations (D.70) to (D.72),
several additional properties can be computed. In this unit process, the
density, p, the x-direction and y-direction components of momentum, pu and
pv, and the energy, pe, are needed at the forward time for the iterative

process. Therefore, in terms of known properties of the flow and the Mach

number:
G P .
p= R; . ! (D.74)
o |14 =1 a2
2
1
/74 2
pa = PoM 1 (D.75)
— 51
RToll +tan2(9)] 1+32—1M2]
pv = pu tan () (D.76)
1
pe = P, 71 —~ 11 11 ! (D.77)
e i R
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The iterative process used to find property values at subsonic inflow boundary

points is described next.

For both predictor and corrector steps, the iterative procedure is initiated
by guessing the forward time Mach number at the inflow grid point being
considered. For the first time step, the Mach number guess is calculated from
the property values at the initial-value surface. Subsequently, the initial Mach
number guess is calculated from the property values at the current time level.
The guessed Mach number is used in equations (D.74) to (D.77) to calculate

guessed forward time values of p, pu, pv, and pe.

Equation (D.73) is rearranged to solve for the temporal derivative of

energy:

A

ab -
V+;:]‘((pv)r M) (D.78)

v? ab-V

_.._._f_—_—

=% —
(re)s 2 —1

(0, —€ )+

Temporal derivatives of density and momentum are calculated numerically
using the current and guessed forward time values of these properties. Using
these temporal derivatives and the transformed space derivatives, equation
(D.78) is solved for a calculated value of pe. If the calculated and guessed
values of pe are equal, to within a specified tolerance, the Mach number guess
was correct and the four guessed forward time property values are the
predicted (or corrected) property values at the new time step. If the
calculated and guessed values of pe are not approximately equal, a zero
finding secant method is used to home in on the correct Mach number. For

the results presented in Section VII, a tolerance of 1078 is used to evaluate
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convergence of the energy difference normalized by the value of energy at the

current time level.

For the predictor step, forward differenced space derivatives are required.
Therefore, quadratic extrapolation is used to approximate property values

outside the computational domain.

D.7 EXIT BOUNDARY POINT UNIT PROCESSES

Because the component of the flow velocity which crosses the exit boundary
can be either subsonic or supersonic, each exit boundary point must be
checked, at each time step, to determine which unit process is appropriate. At
the exit boundary, the unit vector b is placed perpendicular to the boundary,
pointing outward, as illustrated in Figure D-1. Therefore, the quantity bV is
calculated and compared to the local speed of sound, a, to determine whether

the boundary should be handled as a supersonic or a subsonic exit boundary.

When the component of the fluid velocity perpendicular to the exit
boundary is less than the local speed of sound, the fluid properties at that
boundary are dependent upon both upstream and downstream phenomena.
Therefore, at least one boundary condition must be applied to the solution

procedure. This situation is discussed in Section D.7.1 of this appendix.

When the component of the fluid velocity perpendicular to the exit
boundary is greater than or equal to the local speed of sound, the fluid
mechanics at the exit are only dependent upon upstream conditions. From a

characteristic perspective, this means that the base of the Mach cone (domain
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of dependence) lies entirely within the computational domain. In this case the
interior point unit process is appropriate at an exit boundary point. This

situation is discussed in Section D.7.2 of this appendix.

On a C-grid, the exit boundary is a single straight line with a length equal

to the blade spacing. However, the two ends of the computational grid

(§ =1 = constant and & = £,, = constant grid lines) make up the exit

boundary. This distinction does not affect the derivation of applicable
equations at the exit boundary. However, these two sections must be
implemented in a slightly different manner. Specifically, the numerical
approximation of space derivatives in the & direction requires property value
extrapolations beyond the exit at the predictor step for the { =&,
boundary, and at the corrector step for the { = 1 boundary. In both cases,

quadratic extrapolation is used.

D.7.1 SUBSONIC EXIT BOUNDARY POINT UNIT PROCESS. The
boundary condition applied at a subsonic exit boundary point is that the exit

static pressure is known:
P = Pexit (D.79)

Because pressure is not one of the four solution variables being computed at

each grid point, the solution procedure at the subsonic exit is iterative.

To determine the applicable equations at the subsonic exit boundary point,
the governing equations, equations (D.1) to (D.3), are replaced by compatibility

equations, equations (D.14) and (D.15). The waveline equation, equation
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(D.15), is applied in three wave surfaces corresponding to the wave surface X
unit normal vectors i), fiy, and fi3, given by equations (D.16) to (D.18). Since
the boundary condition, equation (D.79), must be incorporated, the waveline
equation corresponding to vector fi; (which was intentionally placed outside
the flowfield) is replaced by the boundary condition. This situation is
illustrated in Figure D-1. The applicable equations at a subsonic exit.
boundary point are the boundary condition, equation (D.79), the pathline
equation, equation (D.14), and the waveline equation, equation (D.15), applied

in the remaining two wave surfaces corresponding to wave surface unit normal

Pradac

vectors fi, and fig:

P=P,, (D.80)

V2 32 V v V2 32 -—
X _ -V = |—-~ € -V- M +% (D.81
2 " ]/)t (pV) + (pe), g 1 +€ )
t
(]
A - \J
V2 anz'v an,
>t 5 ]pt- Vo [PV (ve) E
V2 aﬁz'v - ﬁ2 —
= |—+ € — (V4 —=| U +¢ D.82 ;
P — + T + (D.82) ;

-
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v?  afi,V afig
5 — ]/’t— V+ - ](Pv)t“’(ﬂe)t
2 afiyV an -
S (A S D e Ty A (D.83)
2 ~y—1 ~y—1

Equations (D.80) to (D.83) comprise an appropriate set of equations for the
subsonic exit boundary point. However, these equations are unnecessarily
complicated. Equations (D.81) to (D.83) each contain more than one time
derivative. Equations (D.81) to (D.83) can be rearranged into a form which is
simpler and more computationally efficient to solve by a finite difference
method. The rearrangement and simplification of this set of equations is

demonstrated next.

Adding the two waveline equations, equations (D.82) and (D.83), and

rearranging yields:

(ﬁ2+ﬁ3)-_\7
Vit ~—1 (0, —€)
- 2V+3(i§:—ﬁ3) oV — M | +2[(pe),—€] =0 (D.84)

Subtracting twice the pathline equation, equation (D.81), from equation (D.84),

using the result that fi, + 1, =—b, and simplifying yields:
(65 ~2a Jio,—€) = bW - | .55)

Subtracting the fi; waveline equation, equation (D.83), from the fi, waveline
equation, equation (D.82), recognizing that fiy —fiz = V3 ¢, and simplifying the

result produces:
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;}.
"
(&V)(p—€) = &{(pV),— M | (D.86) ',:
'
Adding b times equation (D.85) to & times equation (D.86) yields:
?
_ .. 5
(pV)t— M = [b(b'v—2a)+é(é-V)](pt—‘€ ) (D.87) ﬁ
)
Simplifying equation (D.87) leaves: ::
“l
(V) — M = [(V—zaB) ](m—‘@ ) (D.88) ?
¢
The vector dot product of the velocity vector and equation (D.88) is: %
¥
—_ ~ "'
V(oY) — M | = [V2—2ab'V}(pt—-‘€) (D.89) X
0‘&
)
Adding equation (D.89) to the pathline equation and rearranging yields:
2
pe) “'g 4.}
=€ +— ( \;2 (D.90) o
2+ —22bV u
y--1 2 "
4
Equation (D.90) is solved for density at subsonic exit boundary points to |:
w4
advance the solution in time. The value of (pe), is determined during the &
iterative solution process. This process will be discussed later. ;:
V)
4
Combining equations (D.90) and (D.88) to eliminate the continuity terms b
W4
yields:
'?:f
- pe), —€ | [V —2ab G
(pV) = M + { 2)‘ VL[ ] (D.91) \
2 +— —2ab-V by
/7_1 2 v
Expanding equation (D.91) into scalar components produces: ':
)
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[(pe)e —€ | [u—~2ab)

(pu)y = M + = > (D.92)
a V -
- + —2abV
ne), —& | [v—2ab.
oy = 4 R € v =2ab D.83)
J a2 VZ R
+— —2abV
—1 2

Equations (D.92) and (D.93) are solved for the components of momentum at
subsoric exit boundary points to advance the solution in time. The value of

(pe), is determined during the iterative solution process.

Up to this point the boundary conciition, equation (D.80), has not been
incorporated. In addition, no equation has been derived to determine the
value of the energy at a subsonic exit boundary point. To tie these two
factors together, consider the energy. Since body forces are negligible,

pe = G +'%pV:. Since the fluid is assumed to be a perfect gas, this relationship
becomes: pe = tyf—)_l + YpV2. Solving this equation for the static pressure
leaves:

P = (y—1)|pe — %pV? (D.94)
This static pressure must be the specified pressure at the subsonic exit.

The following iterative process is used to calculate the flow properties at
the subsonic exit points. The process is initiated by guessing a value for the
energy, pe, for the new time level. For the first time step, the energy value is
obtained from the initial-value surface. Subsequently, the initial guess is set

at the energy value of the current time level.
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The current time level value of energy and the value of energy guessed for
the forward time level are used to numerically calculate a value for the
temporal derivative of energy. This temporal derivative is used in equations
(D.90), (D.92), and (D.93) to calculate values for the density and the
components of momentum. These values of density and momentum and the
guessed forward time value of energy are used in equation (D.94) to calculate a
vélue for pressure. If the calculated value of pressure is equal to the specified
exit pressure, to within a specified tolerance, the energy value guess is correct
and the calculated values of p, pu, pv, and the guessed value of pe are the
property values at the forward time. If the calculated value of pressure does
not agree with the specified exit presure, a zero finding secant method is used
to home in on the correct value of pe. For the results presented in Section VII,

a tolerance of 107% is used to evaluate convergence of the pressure difference.

D.7.2 SUPERSONIC EXIT BOUNDARY POINT UNIT PROCESS. At an exit
boundary point, when the component of the fluid velocity perpendicular to the
exit boundary is greater than or equal to the local speed of sound, the fluid
mechanics at the exit are influenced only by upstream conditions. In that case
the interior point unit process is appropriate. Therefore, the MacCormack
method is applied directly to the transformed governing equations in the
strong conservation-law form, equation (2.33). The resulting finite difference

equations are used to advance the solution in time.

R

S

- e

- .

sy - -,

peac

O s O ST Sy GO O RO N O



St b g et 35 Ba Ty fan sk 4 8 AW e e At e 67 §ea 4 p f0n £TY 4Y2 4%s 472 §¥a-g¥a il T ol et oAl vat val eay uawon

218

‘ D.8 GRID CUT POINTS :

All points on the grid cut lie in one of the regions discussed above.
Specifically, the trailing edge of the blade, one exit point, and several interior
points make up the grid cut on a C-type grid. Therefore, no new equations
need to be derived for the points on the grid cut. However, two factors

complicate the solution at points on the grid cut. ¢

1. Each physical grid point on the grid cut is represented by two

noncoincident grid points on the computational grid.

2. In the computational space, where the calculations are carried out and

where flow property values are stored, there are only grid points in the

positive 7 direction from the grid cut. Therefore, the MacCormack 1
G_ method corrector calculation can not be carried out without special
indexing. A

These issues are resolved for the trailing edge point in Section D.5 of this

appendix.

The interior points are handled as described in Section D.3, with a few
additional steps included to resolve the problems listed above. For every
& = constant grid line intersecting the lower side of the grid cut, the X
(€max+1—E) = constant grid line intersects the same physical location on the
upper side of the grid cut. All grid cut calculations are computed at the
computational grid points which lie on the lower side of the grid cut.
Therefore, the property values at the (£,1) and (£,2) grid points are used to

~ predict the 7 derivatives at the grid cut points. Then, the predicted property

N O e D N L DA D R DA N M NN TN LA I L K L s ™ A ORI ity



R R R N R R R S L I R R T T T T T O O Y A Y O T U Yo Ty

219

values at the (£,1) and (£,,,+1—¢,2) grid points are used to correct the 7

derivatives at the grid cut points.

After the property values have been predicted at (¢, 1), these predicted
values are transferred to the ({,,+1~¢,1) predictor values storage locations
for use in the ({g,,+1—&,2) corrector calculations. After the corrector
calculations have been completed, the corrected property values are

transferred to the (., +1—§, 1) corrector value storage locations.

The exit point which lies on the grid cut is handled as described in Section
D.7, but with the same additional indexing steps just described for the grid cut

interior points.

D.9 PERIODIC BOUNDARY POINTS

All points on the periodic boundary lie in one of the regions discussed
above. Specifically, one exit point and several interior points make up the
periodic boundary on a C-type grid. Therefore, no new equations need to be
derived for the points on the periodic boundary. However, three factors

complicate the flow solutions at points on the periodic boundary.

1. Since the flow through a cascade is assumed to be exactly periodic, the
property values at each point on the periodic boundary on the lower side
of the grid must be exactly the same values found at the corresponding

grid point on the periodic boundary on the upper side of the grid.

2. In the computational space, where the calculations are carried out and

where flow property values are stored, there are grid points only in the

-
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g

0 negative 7 direction from the periodic boundary. Therefore, the h

MacCormack method predictor calculation can not be carried out

without special indexing.

e iy o

3. At the periodic boundary grid point adjacent to the inflow boundary,
there are two grid points upstream of this point along 7 = constant grid
lines. Therefore, a decision must be made concerning how to calculate

the & space derivatives at these leading periodic boundary grid points.

The periodic boundary interior points are handled as described in Section

D.3 with a few additional steps included to resolve the problems listed above.

pr-p—ags

For every & = constant grid line intersecting the the periodic boundary on the

lower side of the grid, the ({,,+1—¢) = constant grid line is the

B Sy e~y

C corresponding grid line on the upper side of the grid. All periodic boundary
.v
calculations are computed at the computational grid points which lie on the 3

periodic boundary on the lower side of the grid. Therefore, the property

S

values at the (&, 7,,,) and (£, +1—E, 7/max—1) grid points are used to predict

the 7 derivatives at the periodic boundary points. Then, the predicted

-

property values at the (&, 75,,) and (€, N.—1) grid points are used to correct
the 7 derivatives at the periodic boundary points. After the corrector
calculations have been completed, the corrected property values are

transferred to the (§q,x+1—E, max) corrector values storage locations.

The special periodic boundary points which lie adjacent to the inflow

e .-

boundary are handled as discussed above with one additional consideration.

Both predictor and corrector £ space derivatives are calculated entirely on the
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N = T)max = constant line on the lower side of the C-grid. In other words,
property values at (&, 7p,,) and ({41, 7,,,,) are used to calculate the predictor
{—direction derivatives at ({,?y.s)- Therefore, property values at
(Emax—S s max) are not used to approximate property derivatives at this special

point.

The exit point which lies on the periodic boundary is handled as described
in Section D.7, but, with the same additional indexing steps just described for

the normal interior points which lie on the periodic boundary.
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e

APPENDIX E

GRID GENERATION

- -

Two of the major problems facing an analyst when constructing the

numerical solution of partial differential equations are: the numerical

A A P

implementation of the boundary conditions along the boundaries of the

physical space, and the selection of the finite difference mesh to represent the

continuous physical space. The boundaries of the physical space do not

- -

generally lie along coordinate lines formed by an equally spaced orthogonal

grid system. When first-order accuracy is acceptable, boundary conditions can

S e e W R

be implemented along arbitrary lines in the physical space and/or
6 computations can be carried out on variable meshes. However, when higher- '

order accuracy is necessary, the above factors present serious difficulties. This

e e e e g

has led to the extensive use of coordinate transformations to map the
boundaries of physical space onto coordinate lines of a transformed space and

to map nonuniform, nonorthogonal grids in physical space into uniform,

e JC I

orthogonal grids in transformed space. Once computational and physical grids
have been generated, the numerical solution is implemented using the b

appropriate transformed governing equations.

In the first part of this section some favorable characteristics of grid
generation methods are described. Then, the elliptic partial differential )

equation grid generation method chosen for this effort is described in more

detail. Third, the techniques used to distribute points around the cascade




@ blade grid boundaries are summarized. Lastly, two illustrative examples are

presented to demonstrate additional capabilities of the grid generator.

E.1 BACKGROUND

The following list presents five features that are often required of grid
generators. Additional features may be required depending upon the specific
problem under consideration. For some simple problems, one or more of the

features listed below may be unnecessary.

1. The grid in the computational (transformed) space must be an equally
spaced orthogonal grid. Such a grid is required to enable the
development of accurate finite difference approximations to the

transformed governing equations which are to be solved numerically in

G the computational space.

2. The coordinate transformation must yield a unique, one-to-one,
correspondence of all points. In other words, there is one and only one
point in the computational space corresponding to each point in the

physical space, and vice versa.

3. The coordinate transformation must be body-fitted. That is, the
arbitrary boundaries in physical space must map directly onto the

straight boundaries of the computational grid.

4. There must be no crossing of coordinate surfaces of the same family, or
of any interior coordinate lines with the physical boundaries. In other

words, both the minimum and maximum values of the transformed
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‘ coordinates must occur on the physical boundaries.

5. The transformation must be continuous, have a continuous inverse, and
have a nonvanishing Jacobian. All physical coordinate lines and surfaces

should form smooth curves in the grid interior.

Partial differential equation methods are flexible in their application and
can fulfill all of the requirements listed above. When all the boundary points
of a physical domain are to be specified, elliptic partial differential equation
methods are appropriate. When some boundaries are unspecified (e.g., free-
stream conditions "far from" an aircraft in an external flow calculation),

parabolic or hyperbolic grid generators may be more appropriate.

In most cascade flow studies, the flow past any blade is assumed to be

G identical to the flow past every other blade. Therefore, periodic boundaries
are chosen which isolate a control volume containing a representative turbine

blade and its associated flowfield. Therefore, exact locations for all boundaries

are known and are specified as Dirichlet boundary conditions. Elliptic partial

differential equation grid generation techniques are used to determine the

physical locations of grid points in the interior of the grid.

E.2 POISSON-TYPE CASCADE GRIDS

In this research, a Poisson-type elliptic partial differential equation grid

generator is used. The Poisson equation is simply the Laplace equation with a

nonhomogeneous source term added.
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The Laplace equation, applied to the generic variable f(x,y), is presented in

equation (E.1):
VH =y +f,, =0 (E.1)
Adding a source term to equation (E.1) yields the Poisson equation:
Vi =1, +1y, = F(x,y) (E.2)

Both the Laplace equation and the Poisson equation are elliptic partial
differential equations. While a grid can be generated using the simpler
Laplace equation, the freedom to specify the nonhomogeneous terms in the
Poisson equation provides the added benefit of being able to control the
relative point distribution in the interior of the grid. For example, coordinate
surfaces can be clustered near a solid boundary. This capability is discussed
in more detail in section E.2.1. When multidimensional grids of this type are
generated, one Poisson equation is used for each space dimension. Thus, for a
two-dimensional Poisson-type grid generator, the following equations must be

solved numerically:

st = gxx +{yy =P (E3)

Vi = ny+ 1y, = Q (E.4)
where P and Q are the nonhomogeneous source terms.

As mentioned earlier, for a cascade flowfield periodic boundaries are chosen
which isolate one period of the flow and allow the analyst to specify exact

locations for each point on every boundary. Several general shapes of physical

grids can be fit to a cascade blade. While a flow-through, or H-type grid, as
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Figure E-1. H-type cascade blade grid.
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shown in Figure E-1, is an obvious choice, these grids are seldom used since

resolution is normally poor near the blade leading edge. O-type grids are grids
in which the 7 = constant grid lines form closed loops around the blade, as
shown in Figure E-2. This type of grid is acceptable for the present study.
However, no family of grid lines is generally aligned with the flow beyond the
trailing edge. This can cause problems if the associated flow-solver is ever
extended to include viscous calculations. In addition, O-type grids often
contain awkward and oversized grid cells near the intersection of the periodic
boundary and the exit boundary. These awkward cells can create relatively
large truncation errors in the flow solution. Therefore, O-type grids are not

used in this investigation.

C-type grids, like the one shown in Figure E-3, will be used in the present
investigation. Obviously, the name is descriptive of the shape of each of the
members of the family of grid lines that surround the blade. Figure E-4 shows
the relationship between the boundaries of the C-grid and the boundaries of

the corresponding computational grid.

Solving equations (E.3) and (E.4) numerically would be simple if the
computations could be carried out on the physical grid. Unfortunately, due to
unequal spacing in this grid, only first-order accuracy can be achieved using
this approach. Therefore, the Poisson equations are transformed to the

equally-spaced orthogonal computational domain and solved there. The

transformed Poisson equations are:
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ade blade grid.

Figure E-2. O-type casc
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Figure E-3. C-type cascade blade grid.
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C-GRID BOUNDARIES

4
|
@
¢ .
PERIODIC INFLOW PERIODIC
5 BOUNDARY GFBOUNDARY '7 BOUNDARY 8
EXIT EXIT
BOUNDARY BOUNDARY
® —
{ GRID 2 BLADE 3 GRID 4
cuT SURFACE cuT
BOUNDARY BOUNDARY BOUNDARY

COMPUTATIONAL GRID BOUNDARIES

Figure E-4. C-type grid physical and computational boundaries.
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oxee — 20, + X, = —I*(Px, +Qx,) (E.5)
(,yy{-{ - 2[7)}'{'/ + ’Ty,,,, = - IZ(PY£ + Qy/;) (ES)

where

= XYy —X,¥¢
a=xy+y,
5 = x{xu +Y{yl/

v =x{+y}

For the é-type grid, grid points on the blade surface boundary, the grid
cut extending downstream from the trailing edge, the inflow boundary, the
periodic boundary, and the exit boundaries are specified as Dirichlet boundary
conditions. A modified successive over-relaxation (SOR) technique is used to
solve equations (E.5) and (E.6), thereby locating the interior points. Like a
normal SOR procedure, the iterative corrections at each point are over-
relaxed. However, corrections to the values of the nonhomogeneous terms, P
and Q, are under-relaxed each iteration. A detailed description of these
nonhomogeneous terms, as they are handled in this investigation, is presented

in the following paragraphs.

E.2.1 CONTROL OF GRID GEOMETRY NEAR BOUNDARIES. For the
grids generated to support this investigation, the nonhomogeneous terms in the
Poisson equations are used to control grid geometry based on the features of

the grid at the n =1 and » = n_,, boundaries. Along the blade surface, grid
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cut, and inflow boundaries, the following two features are controlled:

1. Grid line spacings from points on the inner and outer boundaries to the
corresponding points on the first grid line inside each of these boundaries

are specified.

2. Intersection angles between these same boundaries and the { = constant

grid lines intersecting them are specified.

Similarly, along the periodic boundaries the following two features are

controlled:

1. Grid line spacings from points on the inner and outer boundaries to the
corresponding points on the first grid line inside each of these boundaries

are specified.

2. Slope of the & = constant grid lines in the physical plane where they
cross the periodic boundaries is specified. The slope used is the tangent

of the cascade stagger angle.

Figures E-5 and E-6 illustrate these effects. Figures E-5 and E-6 each
consist of two identical grids joined at the periodic boundary. Figure E-5
presents a Laplace-type grid while Figure E-6 presents a Poisson-type grid
with the control features described above. Notice that, in addition to
controlling geometric fea£ures near the boundaries, the Poisson source terms

also control grid point distribution in the interior of the grid.

The Laplace-type grid has a very large range of grid cell sizes. The very

large grid cells may cause prohibitively large flow solver truncation errors in
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Figure E-5. C-type grid generated by the Laplace equation.
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Figure E-6. C-type grid generated by the Poisson equation.
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these regions of the grid. In addition, there is insufficient control of the
skewness of grid line intersections. Excessive skewness increases truncation

errors and therefore, should be minimized.

Accuracy is also reduced by rapid changes in grid cell sizes and by
discontinuities in the derivatives of the grid lines (i.e., grid line slope,
curvature, etc.). In the limit of infinitely small grid cells, Laplace and Poisson
equations each insure completely smooth and differentiable grid lines in the
grid interior. However, with a periodic boundary like the one joining the grids
in Figures E-5 and E-6, control must be exercised over the grid features av the
periodic boundary to avoid sharp discontinuities in the grid line slopes and
rapid changes in the grid cell sizes across these boundaries. Each of the
problems described above is evident in the Laplace-type grid illustrated in
Figure E-5. However, all of these problems have been overcome in the

Poisson-type grid illustrated in Figure E-6.

E.2.1.1 GRID CONTROL AT INFLOW, BLADE SURFACE, AND GRID CUT
BOUNDARIES. Steger and Sorenson [1] have developed the techniques
required to implement the controls described above. Some modifications to
their method have been developed for this investigation. Steger and Sorenson

start by solving equations (E.5) and (E.6) for P, and Q;, which are the P and

Q values on the boundaries.
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x
.‘
]
Pb = ‘](yURI _qu2) 1 b dary (E7) ':
A
Qb = J(—yER] +X{R2) N temndary (E.S) i
&
¢
4
where v
t
]
:a
2 ¢
Rl = _J (ax£€ —2/8x£'l + ’7)(,!,,) |l“-nundnr_\' Z
'
g
2
Ry = —J%(ay¢ =208y, + ) lim....dm

!
Values of Py and Q,, are calculated at each point on each of the 7 = constant ]
.‘
boundaries using equations (E.7) and (E.8). Since the physical locations of all .
points on these boundaries are specified, x,, y,, xxixi, and y,; are calculated :E
1%
’¥
directly from the specified boundary point locations. :
'
The key to Steger and Sorenson’s method is their evaluation of x, and y,. ,
h
They derive expressions for x, and y, by first considering the offset distance, '
K]
)
AS, which is the distance in the physical space from the boundary point, along :;

a £ = constant grid line, to the corresponding point one 7 = constant grid line
¥
inside the boundary. Thus, u
)
AS = [(Ax)2+(Ay) " E.9 A

- [( ) +( Y)] { =constant ( . )
J
§
In the limit: :
2 2
Y% .

ds = [(dx) +(dy) ] € =constant (E.10)
‘&
3
From the partial differentiation chain rule: :
\
'
%
2
¢
X
0
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\J
L)
t
2
O dS = [(x¢d€ +x,dn)* +(¥¢d€ +¥,dn)*)” |emconstant (E.11) h
n
Since dS/dn represents the distance between two points on the same ‘_f
a$
€ = constant grid line, d§ = 0. Therefore, equation (E.11) reduces to: v
.l
v

ds 2 21 '
(_1'77 = [(X,,) +(y//) ]/ { =constant (E.12) f
N
(]
The second grid geometry control feature which Steger and Sorensen 3
address is the grid line intersection angle at the periodic boundary. This y
v
control is implemented using the vector dot product: E
'
VEVn = |V§ l an cost (E.13) -
4
W
where 0 is the desired intersection angle (§ = 90degrees yields orthogonal grid :"
]
G line intersections). Equation (E.13) is the definition of the dot product of a 8
vector normal to the & = constant grid line with a vector normal to the 0
“
n = constant grid line. Carrying out the vector arithmetic and incorporating :
h
the two-dimensional transformation metrics (& =Jy,, § = —Jx,, N
Ny =—Jy¢ and 7y = Jx¢) yields: .
o]
= —lx24vA(x2+v2)% cosh E.14 h

x§x1,+YEyu - [(X:] +y,,)(X5 +y£ )] cos ( . )

Solving equations (E.12) and (E.14) simultaneously to determine the necessary ?
¢
values of x, and y, required to meet these two conditions yields: ::
)
S (—x¢cosf —y,sind -
X, = %— { 2 2\% ) (E.15) »
n (X( +}'() \J}
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@ _dS (—yccostl +x,sinb) (E.16)
Y=y x{+y3)” '

Both 6 and dS/d7 are specified at every € location on each of the 77 = constant

boundaries.

Once the values of x, and y, on the boundaries are known, the cross

derivatives x;, and y,, needed in equations (E.7) and (E.8) are calculated
numerically by differencing x, and y, with respect to . Therefore, the only
remaining unknowns on the right-hand side of equations (E.7) and (E.8) are
x,, and y,,. The approach used by Steger and Sorenson is to numerically
calculate x

yy and y,, during each SOR iteration using the one-sided

approximations shown in equations (E.17) and (E.18) for the 77 = 1 boundary:

_ —7x, +8xy—x3  3x,
e X,“I = 2 — A ! (E17)
2(A7]) n N =1
_ —7y] +8y2 —Y3 _ 3y', (E ]8)
yu:/ - P A .
2(A77) nWw=1

and the one-sided approximations shown in equations (E.19) and (E.20) for the

Nmax Doundary:

—7x, "m+8x,m_1 —=X(y, 2 3x,
Xy = : . 2) . ) + = (E.19)
2(An) AN Yy

'—7y' ,m_‘+8y Norax—1 T Y (a2 3y,
y']" = ! ( ] 2) ( i ) + 1 (E.20)
2(A77) An '/In-'lx

Once all the necessary first and second derivatives have been determined,

a Py and Q, are calculated using equations (E.7) and (E.8). Thus, most
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derivatives needed to compute Py and Q, can be calculated once and stored,
but x,, and y,, must be recalculated every iteration prior to calculating
Py and Q. Corrections to Py and Q, are severely under-relaxed each SOR

iteration. Their under-relaxation coefficients are increased from initial values

of approximately 0.01, to approximately 0.05 as convergence is approached.

In order to smoothly propagate the P and Q effects throughout the grid,
these quantities are exponentially interpolated into the interior of the grid

using equations (E.21) and (E.22):

P(€) = P(E,1) e D lmt)  pg ) 7Pl len=l) g gy

Q&) = Q1) & Tl 4 Q) 7 ) 99

The terms a = a(&), b = b(§), ¢ = ¢(€), and d = d(€) are positive decay rates
used to control the exponential decay of the P and Q effects into the interior
of the grid. Equations (E.21) and (E.22) differ slightly from those developed by
Steger and Sorenson in that the exponents have been normalized by (7,.—1).
This normalization allows the user to change grid density (i.e., the number of
n = constant lines) without having to change the decay rates proportionately.
A zero finding secant method is used to home in on the appropriate decay

rates at each grid point on each of the 7 = constant boundaries.

Since the theory behind this technique is developed in the limit of infinitely
small space increments, but is applied to a finite size grid, the exact grid

control requested will be approached, but not achieved exactly.
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E.2.1.2 GRID CONTROL AT PERIODIC BOUNDARIES. A variation of
Steger and Sorenson’s technique has been developed during this investigation
for the periodic boundaries of the cascade grid. This new technique is
described in this scction. Steger and Sorenson’s technique allows grid line
intersection angles to be specified, without regard to the slopes of those grid
lines in the physical space. Often, this is exactly the control desired.
However, sometimes the actual slope of a grid line in the physical space must
be specified, with only cautious monitoring of grid line intersection angles.
The periodic boundaries on a C-type cascade grid are an excellent example of
grid line slope specification being superior to grid line intersection angle
specification. Figure E-7 shows graphically that when grid lines pass through
the periodic boundary at other than the stager angle, , unnecessary skewness
results in the interior of the grid. Therefore, forcing the ¢ = constant grid
lines to intersect the periodic boundaries at the cascade stager angle will both

minimize skewness in the interior of the grid and produce continuous grid line

slopes at the periodic boundary.

This type of slope control can be achieved by Steger and Sorenson’s
technique. However, it is unnecessarily cumbersome just calculating the
intersection angle, 6, that corresponds to the stager angle, 3. A much more
efficient method has been developed to achieve the same results. If grid line
spacing and slope control is desired along an 7 = constant boundary, the

following equations replace equations (E.15) and (E.16):

X, = ds sin{7) (E.23)
dny
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Figure E-7. Slope control of grid lines crossing the periodic boundaries. s
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& y, =2 cos() (E.24)

- dy

In the special case of zero stager angle (i.e., vertical { = constant grid lines at

the periodic boundary), equations (E.23) and (E.24) reduce to:

x, =0 (E.25)
ds

=== E.26

Y=gy (E.26)

This technique of specifying the slopes of the intersecting grid lines, rather
than the intersection angles, is employed at the periodic boundaries in the

present investigation.

@ E.3 GRID POINT DISTRIBUTION ON BOUNDARIES

The placement of grid points on the boundaries of the physical grid is as
important as the grid interior control features discussed above. This section
discusses several considerations concerning boundary grid point distribution
and outlines how these considerations are incorporated in the present

investigation.

The following factors should be considered to properly distribute points

g around the boundaries of a cascade blade, C-type grid.

™ 1. Points should be placed in a manner which will provide an appropriate
balance between flow feature resolution and computational efficiency.
In regions of the flow where high property gradients exist (stagnation

points, shock waves, flow velocities near Mach one), the grid points
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should be concentrated to resolve these flow features. On the other
hand, for the sake of computational efficiency, grid points should be

spread out in regions of low property gradients.

Points should be concentrated in regions where fine refinement of
physical geometry is required, or conversely, points may need to be
sparse in regions where grid refinement could cause flow solver

instabilities.

Smooth transitions in grid point density should be incorporated

inbetween regions of high and low point density.

The relative position of corresponding points on the inner and outer
boundary boundaries should minimizes skewness between the

¢ = -onstant and the 1 = constant grid lines throughout the grid.

Blade geometry is normally provided as a series of discrete (x,y) values.
Automatic curve fitting must be incorporated which will appropriately
distribute grid points on the blade surface. These new (x,y) locations
may not necessarily be the same in number or location as the input

values.

Overall grid shape must smoothly and appropriately incorporate cascade

stagger angle, blade spacing, blade camber, and blade thickness.

The location of each point on the upper side of the grid cut (trailing edge
to exit) must be exactly the same as the location of the corresponding

point on the lower side of the grid cut.
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8. The location of each point on the periodic boundary on the upper side of '

the grid must differ from the corresponding lower side point location only
by the appropriate cascade blade spacing and stagger angle offsets.

: E.3.1 BOUNDARY POINT PLACEMENT SEQUENCE. The placement of ’
&j points around the houndary of a cascade blade grid is handled in two basic ‘
f, steps. First, the boundaries are broken into several small segments and each
i of these segments is assigned a location in physical space. Second, grid points
'? are distributed appropriately on each segment.
"
N In the present investigation, the cascade grid boundaries are broken into
3: the 15 segments shown on Figure E-8. Each of these segments is assigned a
1‘ location in physical space as a function of cascade geometry in accordance
C.f with the guidelines described above. The three segments which lie on the
:: blade surface are constructed using a cubic spline curve fit routine developed
J by Akima (20].
0 Once locations are specified for each of the boundary segments, point
i
;E.: locations on each segment are determined using polynomial curve fits of first,
N
:::‘ second, and third order. Each of these polynomials distribute points along the
e:; : arc length of the segment as a function of £or 7. Of course, grid point
:3.: locations match at each of the segment intersections. In addition, the grid
\
!': point spacing is matched at each of the segment intersections.
;
?;; Once boundary point locations are determined, this information is passed

to the Poisson grid solver where interior point locations are determined.
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Figure E-8. Grid boundaries broken into 15 segments.
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E.4 ADDITIONAL GRID GENERATION CAPABILITIES

The cascade grids used in the present investigation have a zero stagger
angle and a constant blade spacing. The grid generator described in this
appendix is also capable of creating grids which have nonzero stagger and
systems of grids around detuned cascades. This section contains examples of
such grids. In each figure an extra grid has been drawn to illustrate the flow

channel and the cascade periodicity.
Figure E-9 illustrates a C-type grid with a nonzero stagger angle.

The three grids presented in Figure E-10 illustrate a detuned cascade.
Unlike conventiona! cascade studies, flow solutions on this detuned cascade
require a system of two C-grids since the cascade repeats itself after every

other blade. These grids are being used by Chiang and Fleeter [21] to study

unsteady flows through detuned cascades.
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Figure E-10. Grid system for a detuned cascade.

8

. W
e I e ot P S TR o - o A A A g ot R L AR UL R AN -
il 0 R T L L TR o T i R S ARV IRTH R AL L R



LI SRS Y S BL AN AL IR ISR AL T T 3 LIS TO A G s PR TR R AL TLI T3] \J A L el R »
& N !

249

APPENDIX F

EXPLICIT ARTIFICIAL DISSIPATION

A numerical solution to the unsteady Euler or Navier-Stokes equations can
be limited by stability considerations. In other words, if the numerical
solution to a set of unsteady partial differential equations diverges rather than
predicting a bounded solution of the equations, no useful information is
derived. A stability analysis for a particular numerical method applied to a
particular set of partial differential equations produces a time step limitation
which must be imposed by the analyist to avoid divergence. Unfortunately,
common stability analysis techniques predict the stability criterion applicable
to simplified linear model equations in the absence of the boundaries of the
domain. Therefore, even when the calculated stability restrictions are
enforced, instabilities can still occur. In particiiar, when numerically solving
the Euler or Navier-Stokes equations, nonlinearities in the equation
formul_ations, various boundary condition implementations, and flow solution
phenomena such as shock waves and stagnation points, often cause numerical
instabilities. Explicit artificial dissipation, or smoothing, is usually applied to

overcome these instabilities.

Numerical dissipation involves smoothing out the locally high and low
property values across the solution domain. In other words, if the value of

density at a grid point is higher than the values of density at the surrounding

grid points, dissipation would lower the density at that point and raise the
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o surrounding values. The effect is to damp local instabilities. Unfortunately,

dissipation can also cause the flow solution to be smeared to the point that

resolution of flow features is lost. '

The term artificial dissipation describes numerical dissipation which does

not model any real physical phenomena. The Euler equations do not contain y
U
y
any dissipative terms. The viscous terms in the Navier-Stokes equations are ;

dissipative. However, the level of real dissipaiion in a viscous flow may not be
4y
sufficient to damp numerical instabilities. "
]
’
When partial derivatives are modeled numerically, the result is not d
. completely accurate. The numerical approximation actually models the -
K ‘;
derivative plus some unwanted higher-order terms. These higher order terms :
d

are often ignored. However, sometimes these terms produce artificial

™)

c dissipation effects. Since this artificial dissipation is a natural result of using
N
the numerical method, it is referred to as implicit artificial dissipation. b
)
¥

When the modeled physical dissipation (if any) and any implicit artificial
¢
dissipation resulting from inexact derivative approximations are insufficient to :’
. ¢
damp instabilities, additional artificial dissipation is explicitly added. This $
: \

) dissipation is referred to as explicit artificial dissipation.

B 4
R h
: The following are desirable characteristics of explicit artificial dissipation. ;
\
1. Explicit artificial dissipation should cause the numerical model to h
"
produce a stable solution. i

2. Explicit artificial dissipation should not cause the numerical soluiion to
D

, differ significantly from the real physical solution. In other words, the
\
3
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dissipation should not unnecessarily smear flow features.

3. Explicit artificial dissipation should be computationally efficient.

F.1 EXPLICIT ARTIFICIAL DISSIPATION MODELS

Since explicit artificial dissipation does not model any real physical
phenomena, there are many acceptable approaches to its implementation.
However, a review of the literature reveals some commonalities between
techniques. For example, numerical dissipation is caused by even-order
derivative approximations. Therefore, explicit artificial dissipation methods
are usually based on some combination of second- and fourth-order derivatives
of the properties being smoothed. The followiilg general equation is

representative of many explicit artificial dissipation models:

fomoothed = f+ At [c2 [pc£2 sfé, f{( +peny sy, frm ]

—Cy [pc€4 Sf£4 f{f{{ +P¢714 Sf774 fl}l[l)l[ ]] (Fl)

where f represents any fluid property being smoothed, At is the time step at
the point where the smoothing is taking place, all the pc terms are property
dependent coefficients, ¢, and ¢, are property independent coefficients, and all
the sf terms are grid dependent scaling factors. Each component of equation

(F.1) is discussed below.

Consideration of the numerical approximations of second and fourth

derivatives illustrates why they are dissipative. Equation (F.2) is the standard
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‘ centered second-order approximation of a second derivative with respect to &:

fig —26i+1i,
Ag?

Equation (F.3) is the standard centered second-order approximation of a

fourth derivative with respect to &:

_ figp—dfiy, +66—4f 41, (F.3)

F €£e

Y

As with any numerical approximation of a derivative, the sum of all the

coefficients in each of these approximations is zero. In equation (F.2) the
property value at the central point is subtracted while the values at the
surrounding points are added. If this derivative approximation, times a
G fractional coefficient, is added to the value of the property at the central
point, f;, it makes the result a weighted average of the value at the point in
question and the surrounding values. If the point in question had a relatively

high value, it would be lowered, and vice versa.

Similarly for the fourth derivative. If the fourth derivative approximation
times a fractional coefficient is subtracted from the property value at the
central point, f;, it produces a weighted average of the property value at i and

four neighboring points.

The second and fourth derivative terms in equation (F.1) are not used
interchangeably. The second derivative terms are used to damp large and
small instability problems. Fourth derivative terms are used to damp small

oscillations over the entire flowfield. Due to the five point stencil
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characteristic of second-order accurate numerical methods applied to two-
dimensional physical spaces, a numerical decoupling of the odd and even grid
lines can occur in the flow solution. Fourth-order dissipation does an excellent
job of smoothing the property value oscillations that are caused by this
decoupling. On the other hand, as Pulliam [22] demonstrates, due to its large
nine point stencil, fourth derivative smoothing creates oscillations across

strong flowfield features such as shock waves.

All the smoothing terms in equation (F.1) are multiplied by the time step.
This causes the smoothing to be scaled at the same magnitude as the space
derivative terms in the Euler or Navier-Stokes equations. In addition, if local
time steps are being used rather than global time steps, multiplication by the
time step will cause more explicit artificial dissipation to be added where

larger time steps may be allowing instabilities to grow faster.

The second-order property dependent coefficients, pc{, and pc7,, produce
two effects. They cause the artificial dissipation to resemble viscous
dissipation. They also can be used to automatically concentrate large

amounts of dissipation in areas where instability is most threatening.

In a viscous flow, the greatest effects of viscosity are felt where the second
derivatives of velocity are the highest. Similarly, when pcf, and pe7, are
directly proportional to the second derivative of a property, the artificial
dissipation is concentrated in regions where the second derivatives of the
scaling property are large. Typically, pressure or density is used as the scaling

property in primitive variable or conservative variable flow solvers,
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0 respectively. The scaling property derivatives are usually normalized by the
magnitude of the scaling property. For example a common scaling factor is

the second derivative of pressure divided by pressure.

In order to spread out and more smoothly apply the effects of explicit
artificial dissipation, a property dependent scaling factor can be made
proportional to the largest second derivative of the scaling property on any
grid point in the five point stencil associated with the grid point being
smoothed. As these schemes become more elaborate, they also tend to become

more computationally demanding.

i By scaling explicit artificial dissipation with property derivatives, the
dissipative effects are automatically concentrated in areas where instability is
likely to occur or is already evident. Some flowfield regions, such as near g
shock waves or near airfoil trailing edges, are characterized by rapid changes
X or discontinuities in property values. These rapid changes or discontinuities
often cause numerical instability. In the early stages of development,
numerical instability is usually evidenced by roughness in solution property

value surfaces. Therefore, in unstable regions of the flowfield and near

physical phenomena where instability is likely, the second derivatives of
pressure and density are large. Thus, scaling in proportion to these second

i« derivatives applies the dissipation where it is most needed.

Multiplying pc€y, or pemy, times their respective dissipative second
derivatives produces the product of two second derivatives. By convention this

product is sometimes referred to as product fourth-order dissipation. This
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@ should not to be confused with the actual fourth-order dissipation terms in X

equation (F.1).

Fourth derivative dissipation usually requires more computational eflort

]

)

than second derivative dissipation. Also, on the relatively coarse grids used )/
for inviscid calculations, the nine point stencil used to calculate fourth 0
Y
derivatives can stretch across a large region of the grid. This can cause o
&

excessive smearing. In addition, fourth derivative dissipation is not normally N
required for stability. Therefore, unless a very high level of convergence is W
required or aesthetic smoothing of small wiggles in the property values is _
it

desired, the fourth derivative terms can be eliminated completely. '
A
Like pc&, and pcn,, the fourth derivative scaling factors, pc{, and pern,, are o

¥

property dependent. However, rather than using roughness in property value

surfaces to increase these dissipation coefficients, pc{, and pcn, are normally

decreased in regions where property value surfaces are rough. As discussed
earlier, fourth-order dissipation causes oscillations across flow features such as .
shock waves. Therefore, in these regions of the flowfield, researchers such as *
Jameson [23] and Pulliam [22] gain stability through second-order .explicit. ::
artificial dissipation and force the fourth derivative coefficients to zero. -

Calculating pec&,, pcny, pcfy, and pery requires a significant amount of S:
computational effort. In many flowfields these scaling factors are not needed. :':
Therefore, these factors are often all set to a constant value of 1.0. Since this :
removes the fluid property dependence from the coefficients of the damping :'s.
terms, much of the similarity with natural dissipation is lost. The resulting ,'.
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simpler damping terms are often referred to as smoothing rather than artificial

dissipation.

The property independent coefficients. ¢, and c¢,, are used whether or not
property dependent coefficients are used. These coefficients set the magnitude
of the dissipation over the entire flowfield. In some cases it is beneficial to
vary these coefficients as a function of time. For example, ¢, might be linearly
decreased from a value of 1.0 to a value of 0.4 over the period of 1000 time
steps. This may keep a rough initial-value surface from making the solution
diverge during the first few time steps while still minimizing flow feature

smearing of the converged solution.

The coefficients sf&,, sfn,, sf€,, and sfy, scale the dissipative terms to
correct unwanted, grid dependent scaling of the dissipative derivatives. The
dissipative derivatives in equation (F.1) are all taken with respect to the
computational variables (§,7). On the computational grid, all grid lines are
equally spaced. On the physical grid, the grid lines are not equally spaced.
Therefore, derivatives with a given magnitude in physical space will, when
differentiated in computational space, have a smaller magnitude in densely
packed regions of the grid than in sparsely packed regions of the grid.
Without the sf correction factor terms, sufficient smoothing near densely
packed‘ areas of the grid will cause excessive smoothing in relatively coarse
areas of the grid. To accentuate this problem still further, grids are often
packed near boundaries where many instabilities originate. Fortunately, if the
grids are stationary, the scaling factor terms can be calculated once, at the

beginning of the flow study, stored, and used at each time step.
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F.2 EXPLICIT ARTIFICIAL DISSIPATION NEAR BOUNDARIES

The boundaries of the computational domain can be the source of some
numerical instabilities. However, special consideration must be given to
implementing explicit artificial dissipation near flowfield boundaries. In fact,
the subtle problems encountered when smoothing is applied perpendicular to
boundaries are so difficult that it is usually considered best not to smooth
perpendicular to boundaries. The following paragraphs explain why simple
extensions of interior point dissipation implementations can produce

unacceptable results.

Fluid properties are computed only on one side of the grid points which lie
on the computational boundaries of a flowfield. Therefore, equaticns (F.2) and
(F.3) can not '.be applied at these points, perpendicular to the boundary,
without some extra provision. Several possible modifications to the interior
point implementations exist. Four possibilities for smoothing at the
boundaries are listed and discussed below. At first these options appear to
make smoothing at the boundaries simple and feasible. However, closer

examination reveals that none of these options are profitable.

1. Use linear extrapolation to approximate property values outside the
boundary. Then use a standard, second-order derivative approximations

at the boundary point to smooth.

2. Use quadratic extrapolation to approximate property values outside the
boundary. Then use a standard, second-order derivative approximations

at the boundary point to smooth.
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3. Use the standard one-sided - _cond derivative approximation at the

boundary point to smooth.

4. Use the standard one-sided first derivative approximation at the

boundary point to smooth.
The standard linear extrapolation formula is:
fO,u = 2f1,l[ —fZ,l/ (F4)

where, for this example, the boundary point is the &=1 grid point.
Substituting equation (F.4) into equation (F.2) with i=1 yields exactly zero.
This is to be expected since a linear extrapolation approximates a straight line

and therefore, no second derivatives can exist.
The standard quadratic extrapolation formula is:
fo,u =3 fl,l; -3 f2,u +f3,u (FS)

where, again, the boundary point is the £ =1 grid point. Substituting equation
(F.5) into equation (F.2) yields the following approximation for the second

derivative of f with respect to £ at a £ =1 boundary:
= fl,u —2f2,1; +f3,u (FG)

Unfortunately, using equation (F.6) to smooth at point (1,7) would have the
opposite effect. If this derivative approximation, times a fractional coefficient,
is added to f, ,, the difference between f, , and f, , would increase, rather than

decrease! Thus, instead of damping instabilities, they are excited.

Instead of extrapolating across the boundary and using centered differences

to approximate derivatives, one-sided approximations might be used. The
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one-sided second derivative approximation at point (1,7) is exactly equation

(F.6). Therefore, this approach would also be counter productive.

The one-sided approximation of the first derivative of { with respect to ¢ at

point (1,7) is:

f2,' _fl,: )
fo = —"AT—I— (F.7)

If this derivative approximation, times a fractional coefficient, is added to f, ,,

Py

P

the difference between f, , and f, , would be decreased, as desired. However,

s

3
"

this first derivative is convective, rather than dissipative. Therefore, rather

o

e

- - >

than averaging surrounding points, the effect would be to convect interior

o

i Cen

point property values to the boundaries and significantly alter the flowfield

solution.

Other possibilities exist for smoothing perpendicular to boundaries. ¢

However, care must be exercised to avoid variations of the same problems

encountered above. One wusable scheme is to use the one-sided second

derivative approach, equation (F.6), described in (3) above, but multiply the

smoothing term by minus 1.0.

Because of the difficulties associated with implementing explicit artificial

Yo T e

dissipation perpendicular to computational boundaries, many researchers do

-
2Ty

not smooth perpendicular to boundaries. Instead, enough explicit dissipation 1

-

is added throughout the remainder of the grid to control instabilities.

e ok S

Until now no mention has been made of implementing explicit artificial

dissipation along (parallel to) computational boundaries. Smoothing along

y ; A FAT ARSI AR AT R AT A " T P I R LT A I T T N PN
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v
N
4
@ computational boundaries is feasible. However, in some cases special 4
!
precautions must still be taken. For example, along a free slip, impermeable ,
N
boundary, when the velocity is smoothed, extra effort should be applied to ::
)
',
insure the resulting velocity vector is tangent to the boundary. ::
3
Y
)
F.3 EXPLICIT ARTIFICIAL DISSIPATION FOR THE PRESENT %
'\t

X
INVESTIGATION _ b

]
In the first two sections of this appendix, a variety of explicit artificial .:‘,
0
dissipation techniques and special considerations are discussed. Obviously, :'{
)
explicit artificial dissipation schemes can be simple or complex. They can also '
be efficient or very demanding computationally. For the sake of economy, ‘
po
explicit artificial dissipation should be kept as simple as possible. This section ‘:f
\)

'

t. describes the approach to explicit artificial dissipation used in the present

investigation. o
"
N

The current research effort employs a conservation variable form of the ::

|
Kentzer method (2] at the flowfield boundaries and the MacCormack method X
(3] throughout the flowfield. This combination requires some explicit artificial
N
‘

dissipation to avoid instabilities. Specifically, the blade surface boundary ~

|
appears to generate instabilities. However, when a small amuunt of smoothing o
.'f

)
is applied over the majority of the grid, excellent results are achieved. }
‘]

For the sake of computational efficiency, only second derivative smoothing ;
is applied. In other words, the fourth derivative terms are not used, and pc&, W
N

and pc7, are each set to 1.0. Therefore, the general formula used to smooth \

each of the four conservation variable properties p, pu, pv, and pe, is: :

»
'\
& 3

-\
)

~
] |,"
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3~ s

@ fsmoothed = f+ At Co [Sf&z f{{ +Sf772 f’l'l ] (F8)

At the blade surface and trailing edge point boundaries, smoothing is only

applied tangent to the boundaries. At these boundaries the momentum

-

magnitude is smoothed and then split into x and y components to insure

tangency.
No smoothing is applied at the inflow or the exit boundaries.

Interior points on periodic boundaries and on grid cut boundaries are

Y OV en -

treated like other interior points but with special indexing required due to the

boundary locations on the computational grid.

The property independent coefficient, ¢y, is linearly decreased in time from

-

C an initial-value to approximately half that value in the following manner. The
@
upper and lower limits of ¢, are set along with a multiplying factor. At each

time step, the value of ¢, is multiplied by the multiplying factor until the

Bl Cfrea ey

lower limit of ¢, is reached. At all subsequent time steps ¢, is maintained at

the lower limit. t

As described in Section F.1 of this appendix, the grid dependent scaling
factors, sf, and sf7,, are used to correct unwanted, grid dependent scaling of

“ the dissipation derivatives, f;; and f,,. Without these factors, the dissipation \

e
_ derivatives have less effect in areas of the physical grid where grid points are ,ﬁ
. densely packed than in areas where grid points are sparse. To eliminate this

effect, a procedure has been developed to rescale property derivatives which

are taken with respect to computational directions.

|
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Consider a curve in physical space, s, which follows any computational grid
line. For illustrative purposes, assume s follows an 7 =constant grid line.
Differentiating the dissipative derivatives with respect to s, rather than  or 4,
solves the grid scaling problem. Along the 7 =constant grid line, the first
derivative of a property f with respect to s is f;={; {,. Differentiating again

with respect to s produces:

This expression can be further manipulated to produce:

fs = (fi)s fs + f{ (fs)s (F'IO)
fss = f{{ (65)2 + f{ Ess (F'll)

As described in Appendix E, a serious effort is made to insure that grid cell
sizes and shapes change only gradually on the physical grid. Therefore,

£ = 0. Assuming this is exactly the case, equation (F.11) becomes:
fE£( s) (F.12)

Using finite differences, § =~ A{/As. Remembering that s is a function of x

and y and that A{=1.0, equation (F.12) becomes:

& = - (F.13)

2 2 |+
(xi+l,j "xi—l,j) (Yi+1,j —yi—l,j) 2
4 4

and
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(&) = : - (F.14)

] 2
(X1 —Xic1 )"+ (Yie1;—Yio1y)

This term is the scaling factor used to eliminate unwanted grid dependent

scaling for dissipative derivatives with respect to the { direction. Therefore:

4
sf¢, = (F.15)
2 2
(X1 —Xiz1)” F(Yierj—Yio1 )
Similarly, for dissipative derivatives with respect to :
sfn, = 2 7 (F.16)

(xi,j+l —xi,j—1)2 + (Yi,j+1 _Yi,j—l)

The cascade grids used in the present investigation do not change with
time. Also, sf€, and sfy, are functions only of grid point locations. Therefore,
sf, and sfrn, are calculated once and stored, prior to the first time step.

These stored values are then used at every time step.
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